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A Novel Contactless Middle Finger Knuckle Based Person Identification
Using Ensemble Learning*
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Abstract—In Modern times, automated security for
identifying a person is one of the main concerns. There
is a significant need for a trustworthy and secure identity
verification solution. A reliable way to identify someone can
be using a biometric identification system. The finger knuckle
pattern offers excellent discriminatory features for biometric
identification with indirect touch, including the advantages of
long-range visibility. Existing models are failing to handle the
depth information in finger knuckles that are highly relevant to
understand the identification patterns. Therefore, we elaborate
on the significance of utilizing the middle finger knuckle for
biometric identification. We propose an ensemble approach
that appropriately captures the rich features to identify a
person based on their finger knuckle. The proposed model
performance is evaluated on a standard dataset (HKPolyU
3D photometric stereo knuckle image dataset). Experimental
results illustrate that the proposed model outperforms the
existing results. Further, this approach would be advantageous
in forensic investigations, security, and surveillance.

Keywords— Ensemble Learning, Finger Knuckle Recogni-
tion, Biometrics, Personal Authentication

I. INTRODUCTION

Automatic methods for personal identification are a crucial
issue for academic research and businesses due to their use
across all fields, including law enforcement security and e-
commerce [1]. Automation using machine learning and deep
learning techniques is sought after many applications like
vision, text and in healthcare [2], [3]. Likewise, numerous
industries have focused on automating Biometrics in recent
years. In the context of security applications involving phys-
ical or logical access control systems, the recognition of
identity data through diverse physiological traits like the
face, signature, iris, fingerprint, finger knuckle print, palm
print, voice, and hand geometry introduces a unique chal-
lenge in managing extensive biometric data for individuals.
Automated biometric authentication has several significant
features because they increase the reliability and security of
e-commerce trades. These benefits frequently outperform the
privacy risks underlying their consumption or deployment
[4]. However, it isn’t easy to readily integrate the palm
print recognition system for current security applications.
It is also more expensive than other biometric systems.
Research focusing on hand characteristics, fingerprints, and
finger knuckle prints has experienced notable growth and
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emergence due to their diverse features. This procedure
[5] is also utilized in forensics applications, where psy-
chological variables, rotational and transformational variant
images are used to identify the individual. It is simple
to capture finger knuckle images with inexpensive tools.
Hand attributes contain incredibly recognizable aspects that
enable identity information. It was collected without physical
contact and demonstrated outstanding accuracy and speed, so
it received a high user approval rate. The distinct information
embedded in the valley pattern between the middle and
proximal phalanges of fingers, the skin crease, and the finger
knuckle pattern can be observed from a distance and captured
alongside other hand biometrics.

Yet, it may be quite challenging to extract knuckle curves
and wrinkles from 2D images. The intensity data may be
considerably impacted because of illumination variations
brought on by uneven reflections off nearby 2D knuckle
surfaces, as the 3D information is not anticipated to alter with
changes in illumination. Moreover, spoofing attacks can be
more successful against 2D than 3D images. By displaying
printed pictures, one individual can duplicate another.
Several experiments have been carried out to develop iden-
tification systems that consider knuckle pictures for iden-
tifying people. In the early stages of knuckle identifica-
tion systems, researchers relied on manual techniques to
extract distinctive information from knuckle images. These
methods involved handcrafting feature extraction approaches
to derive feature vectors containing relevant discriminative
details. Subsequently, a Traditional classifier was employed
to compare and classify the acquired feature vectors, enabling
the identification of individuals based on specific patterns and
characteristics. Its low capability is the limitation of such 3D
knuckle recognition. Recent studies on convolutional neural
networks (CNNs) performance for image categorization have
been quite promising [6]. It integrated feature extraction and
classification into a unified end-to-end model, allowing for
a seamless process of extracting relevant features and per-
forming classification simultaneously. This method’s applica-
bility has been addressed in various biometric identification
challenges, including Recognition of faces, iris patterns, and
fingerprint recognition. The current models are unable to
effectively address the depth information inherent in finger
knuckles, which plays a significant role in comprehending
the identification patterns essential for accurate analysis. To
mitigate overfitting, a common problem in machine learning,
training deep convolutional neural networks (CNNs) requires
substantial data. However, the utilization of deep CNNs
for finger knuckle identification has been limited due to
the scarcity of publicly available extensive datasets. One of
the key strategies to address these limitations is to apply
aggressive data augmentation techniques. Also, there is a
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convincing reason to employ different CNN models and
various ensemble methods to enhance the recently developed
3D middle finger knuckle recognition system. This study
incorporates these cues and implements an ensemble learn-
ing technique that utilizes four distinct CNN models. This
approach aims to enhance the performance of finger knuckle
recognition systems by leveraging the combined strength of
multiple models.

II. RELATED WORK

The technique that automatically detects a person’s
identification is known as biometrics, and it is a prominent
research field with significant implications for everyday
use [7], [8]. For instance, practically every nation uses
biometrics for immigration checks due to its dependability,
efficiency, and ease of collecting biometric images. Access
to resources and authentication for online transactions are
two further uses for consumer apps. Physiological properties
for accurate biometric recognition include the face, iris,
ear, fingerprint, palmprint, and finger knuckle patterns.
So far, each biometric identification has advantages and
disadvantages. For instance, a person’s cosmetics may
change how their face looks, while sweat and grime can
make fingerprint images look less apparent. The biometric
indicators selection is contingent upon the application’s
requirements. For a biometric system to be considered
adequate, it must fulfill the prerequisites of precise and
appropriate recognition.

The fingerprint is one of the most frequently used biometric
traits out there. Nevertheless, developing fingerprint-based
biometric identification involves significant difficulties. At
first, fingertip deformations, lingering dirt, moisture, sweat,
and cuts can reduce the accuracy of fingerprint identification.
Poor-quality fingerprints for automated identification can be
harmful to a large number of workers and elderly people.
According to a NIST report [9] given to the US Congress,
2% of the population’s fingerprints are of insufficient
quality. Following another UIDA research [10], 1.9% of
the general population cannot be verified using fingerprints.
Finger knuckle layouts may be obtained synchronously with
fingerprint pictures and are less prone to distortion since
they come into touch with objects less often during daily
activities. In contrast to a fingerprint, a finger knuckle may
be easily obtained from a distance since the main ridges
and valley patterns are clear to see. For this reason, adding
finger knuckle patterns to only fingerprints might help
address some issues and offer more dependable biometric
recognition solutions.

Many studies have examined the distinctiveness and
dependability of finger knuckle patterns for human identities
[11]-[16], wherein discriminative information has been
studied using 2D photos of finger knuckle patterns. The
authors [17] presented a unique biometric approach for
feature extraction using a unique Riesz transform-based
feature identification method and compressed it using a 6-bit
coding scheme. The author [18] examined experimental
results on several main and minor knuckle patterns
using a publicly accessible database. This approach may
be a benchmark for assessing performance using 2D
finger knuckle photographs. Research [19] that looked at
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discriminative information from 3D creases and curves also
revealed significant information. Furthermore, emerging 3D
imaging systems is necessary to replace conventional 2D
imaging systems. For instance, one example [20] employed
a fast camera with the addition of a modified projector for
capturing 3D fingers, while another reference [21] used five
cameras. Fine 3D texture patterns may be recovered with
great precision using the photometric stereo technique. To
discover distinct 3D features and, more precisely, identify
3D finger knuckle patterns, authors [22] looked at the
3D information of finger knuckle patterns and developed
a novel feature descriptor architecture. The same year,
authors [23] created a more effective matching approach
for the problem using the surface key points retrieved
from the 3D knuckle surface. The authors [24] additionally
acknowledged the difficulties encountered in constructing
biometric systems, including the limited availability of
training data and the substantial variability between training
and testing samples observed in real-world implementations.
For contactless 3D finger knuckle identification, they
provided an advanced deep neural network-based technique.
For contactless 3D forefinger knuckle identification, they
provided a novel deep neural network-based method. The
authors [25] also researched the possibility of utilizing 3D
middle finger knuckle patterns for biometric verification.
In order to detect 3D finger-knuckle patterns, the study
introduces a newly developed deep convolutional neural
network model that is designed to be user-friendly and
has undergone recent training. The testing results were
remarkably positive, suggesting a promising potential for
employing the 3D middle finger knuckle layout in various
biometric technologies. Our work has thus concentrated on
thoroughly investigating 3D middle finger knuckle outline
detection utilizing complex neural networks and different
ensemble learning techniques.

Many studies have examined the distinctiveness and
dependability of finger knuckle patterns for human identities
[11]-[16], wherein discriminative information has been
studied using 2D photos of finger knuckle patterns. The
authors [17] presented a unique biometric approach for
feature extraction using a unique Riesz transform-based
feature identification method and compressed it using a 6-bit
coding scheme. The author [18] examined experimental
results on several main and minor knuckle patterns
using a publicly accessible database. This approach may
be a benchmark for assessing performance using 2D
finger knuckle photographs. Research [19] that looked at
discriminative information from 3D creases and curves also
revealed significant information. Furthermore, emerging 3D
imaging systems is necessary to replace conventional 2D
imaging systems. For instance, one example [20] employed
a fast camera with the addition of a modified projector for
capturing 3D fingers, while another reference [21] used five
cameras. Fine 3D texture patterns may be recovered with
great precision using the photometric stereo technique. To
discover distinct 3D features and, more precisely, identify
3D finger knuckle patterns, authors [22] looked at the
3D information of finger knuckle patterns and developed
a novel feature descriptor architecture. The same year,
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Fig. 1: Architecture Diagram of Ensemble Deep Learning for Middle Finger Knuckle Identification.

authors [23] created a more effective matching approach
for the problem using the surface key points retrieved
from the 3D knuckle surface. The authors [24] additionally
acknowledged the difficulties encountered in constructing
biometric systems, including the limited availability of
training data and the substantial variability between training
and testing samples observed in real-world implementations.
For contactless 3D finger knuckle identification, they
provided an advanced deep neural network-based technique.
For contactless 3D forefinger knuckle identification, they
provided a novel deep neural network-based method. The
authors [25] also researched the possibility of utilizing 3D
middle finger knuckle patterns for biometric verification.
In order to detect 3D finger-knuckle patterns, the study
introduces a newly developed deep convolutional neural
network model that is designed to be user-friendly and
has undergone recent training. The testing results were
remarkably positive, suggesting a promising potential for
employing the 3D middle finger knuckle layout in various
biometric technologies. Our work has thus concentrated on
thoroughly investigating 3D middle finger knuckle outline
detection utilizing complex neural networks and different
ensemble learning techniques.

III. PROPOSED MODEL

We proposed a deep learning architecture based on en-
semble learning techniques. The developed model aims to
learn and extract textual and depthwise information from the
middle finger knuckle using well-known CNN models such
as DenseNet169, ResNet50, InceptionV3, and XceptionNet.
As shown in Figure 1, the input images are first fed to Four
different models—Resnet50, Densenet169, Inceptionv3 and
XceptionNet —which classify them using the same dataset.
After the prediction, we used the average predictions to
combine the predictions and create ensemble models. After
that, this model is fed to the same test data, which is
session two data, and has improved accuracy. The CNN
models, such as Resnet50, Densenetl69, Inceptionv3 and
XceptionNet were fine-tuned on the Imagenet dataset.

A. Inception-v3

It employed 1 x 1, 3 x 3, and 5 x 5 convolution layers
simultaneously in the inception module, fused these three
outputs, and transferred them to the next module. As a result,
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various scales of information are processed simultaneously
with the support of a more comprehensive network. It also
reduces parameters by using a small convolution kernel size
and splitting the module channel-wise and spatial-wise.To
lower the parameters while retaining the receptive field
and improving representational abilities, the Inception-v3
substituted a convolution with a kernel size of 5 x 5. with
two convolutions with a kernel size of 3 x 3.

B. Resnet-50

To solve the issue of disappearing or expanding gradients,
Resnet was developed. ResNet consists of multiple residual
blocks, each consisting of a convolution layer, a ReLU
layer, and a batch normalization layer. Additionally, the
input and output of each residual block were connected
directly through an identity connection to facilitate residual
learning. While deep networks are being trained, this primary
feature addresses gradient issues. ResNet50 is constructed by
sequentially stacking multiple residual blocks until the total
number of network layers reaches 50.

C. Densenet

Similar to Resnet, Densenet is utilized to solve the vanish-
ing gradient issue. But did not consist of a residual block to
achieve the goal. It used dense block and the input of dense
block n-th layers concatenated with all prior n-1 layers. For
this, it is possible to maximize the use of the characteristics
of earlier layers while carrying out a related action on the n-
th layer. This kind of reuse feature method can be helpful for
better feature work while reducing the number of parameters.

D. XceptionNet

Xception employs depth-wise separable convolutions.
There are a total of 36 convolutional stages. The Xception
model performs the sequential convolution as the initial step,
followed by the spatial convolution applied across channels.
For Xception, there is no intermediate activation. Due to this,
it has the best accuracy compared to other methods.

E. Ensemble Learning

The two methods frequently used to ensemble multiple
networks are the weighted average and averaging. An en-
semble learning approach called weighted average ensemble
combines the predictions from many models, with each
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model’s contribution being weighed according to its profi-
ciency or competence. The average is computed by summing
the outcomes of multiple networks, where each network
carries equal weight and exerts an equal impact on the final
output. The following formula for ensemble learning,

1) Average Ensemble::

Yi+ Yy +Y;+Y34 Y,
Yaug = 1 2 43 3 4 1)

In the average ensemble, Y;, Yo, Y3, Y, represent different
model, respectively.

2) Weighted Average Ensemble::
Ywavg = WiY1 + WaYo + WaYs + Wi Ys + WaY,  (2)

In the weighted average ensemble, W7, Wy, W3, and W,
represent the weights assigned to each model, respectively.
The process of assigning weights manually involves utilizing
existing knowledge.

IV. EXPERIMENTAL RESULT
A. Dataset

The HKPolyU 3D finger knuckle image dataset, previously
released to the public, was used in this research to evaluate
the model performance [26]. It offers a dual-stage dataset
with both two-dimensional and three-dimensional images
of knuckles. This dataset for imaging techniques was col-
lected using a photometric stereo technique. The biometric
photography equipment comprises a camera, seven evenly
distributed lights, a control circuit, and a computer system.
The dataset was collected from 228 individuals, out of which
190 participants volunteered for the second data-gathering
session. Each session for every subject included six pho-
tographs of the forefinger and six photographs of the middle
finger. For each 3D image, there are seven corresponding
photometric stereo images. Consequently, each subject in
each session has 42 images of the forefinger and 42 images
of the middle finger.

This 3D finger knuckle database contains complex images
that might illustrate the real reality circumstances, where
photographs from the second session were captured using
various imaging settings, imaging lenses, and lighting [24].
The authors [26] stated that using forefinger pictures can
result in better performance than using middle finger knuckle
images.

By proposing a convolutional neural network model for
assessing middle fingers, the author [25] aims to reduce the
impact of the middle finger knuckle problem. As a result,
just the middle finger was employed in the investigation. The
approach demonstrates a reasonably commendable solution
With a 71% accuracy rate.

In this study, we employed ensemble learning techniques to
produce a more precise accuracy for identifying 3D middle
finger images. As a result, only the 3D middle finger images
of 190 subjects were included in the study. We used different
data augmentation techniques such as blurred images, soft
edges, noisy images, flip, and brightness increase and de-
crease in session one image. For each participant, there were
294 images; as a result, 55860 images from session one were
utilized for training the model. In session 2, 7980 images
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were employed for testing. The efficiency and excellence of
the proposed network were assessed using a total of 63840
images.

B. Model Evaluation

1) Experimental Setup: The network was built on this
machine, which has an Intel Xeon CPU and 64 GB of RAM,
using the Python package and the Linux operating system.
The training settings for models have been specified, with the
batch size 1 set to 128, and a 50-epoch limit was imposed.

2) Classification Metrics: The measures listed below
were used to measure the model’s effectiveness. For
instance, Accuracy (Accu), Precision (Pr), Recall (Re), F1
Score (Flsc), True positives (TrPs), True negatives (TrNe),
False positives (FaPs), False negatives (FaNe):

2 x Pr. x Re,
Flsc = 3
TN Z Pr. + Re. 3)

In this formula, k represents the number of classes, and N
represents the number of samples.

The False Reject Rate (FRR) refers to the rate at which a
biometric system incorrectly rejects or fails to authenticate a
valid user or sample.

FaNe
FRR= ———F—«1—— 4
TrPs+ FaNe @
The False Acceptance Rate represents the rate at which a
biometric system incorrectly accepts an impostor or unau-

thorized individual as a genuine match.

FaPs
FAR= ————— 5
FaPs+TrNe )
The Equal Error Rate is a performance metric used to
evaluate the accuracy and balance of a biometric system’s
False Acceptance Rate (FAR) and False Reject Rate (FRR).
FAR+ FRR

EFER = — ©6)

3) Result: The primary dataset is divided into training
as session one images and testing as session two im-
ages. Table I shows the classification results without aug-
mentation; the models Densenet121, Inceptionv3, Resnet50,
DenseNet201, DenseNet169, XceptionNet and ResNet101
give a prediction of accuracy 49.91%, 52.84%, 53.27%,
54.27%, 55.84%, 57.62% and 60.23%. Table II shows
the classification results with augmentation; the models
Densenet121, Resnetl01, Inceptionv3, ResNet50, Xception-
Net, DenseNet201 and DenseNet169 give a prediction of ac-
curacy 65.16%, 71.72%, 71.64%, 72.37%, 75.28%, 81.96%
and 82.03%. We obtained 88.85% for the average ensemble
method after applying the ensemble learning approach for
the combination of DenseNet169 + ResNet50 + InceptionV3
+ XceptionNet.

Table III presents the evaluation results of the ensemble
methods. The metrics used for evaluation include preci-
sion, recall, Fl-score, and test accuracy. The Voting method
achieved a precision of 89.07%, recall of 84.80%, F1-score
of 83.20%, and test accuracy of 84.80%. The Weighted
Average method improved the precision to 89.95%, recall to
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TABLE I: The Performance Comparison of Proposed Model
with State-of-the-Art Models (without Augmentation).

Model Precision(%) | Recall(%) | F1-Score(%) | Test Accuracy(%)
DenseNet121 44.91 49.91 41.38 49.91
InceptionV3 63.28 52.84 47.71 52.84
ResNet50 50.18 53.27 45.59 53.27
DenseNet201 50.54 54.27 46.31 54.27
DenseNet169 52.28 55.84 48.30 55.84
XceptionNet 60.14 57.62 52.62 57.62
ResNet101 63.28 60.23 54.60 60.23
Proposed 65.31 64.07 57.69 64.07
Method

TABLE II: The Performance Comparison of Proposed

Model with State-of-the-Art Models (with Augmentation).

Model Precision(%) | Recall(%) | F1-Score(%) | Test Accuracy(%)
DenseNet121 72.72 65.16 61.56 65.16
ResNet101 77.02 71.72 69.53 71.72
InceptionV3 78.08 71.64 69.52 71.64
ResNet50 77.97 73.37 69.65 72.37
XceptionNet 81.51 75.28 72.64 75.28
DenseNet201 86.60 81.90 80.30 81.96
DenseNet169 86.51 82.03 80.21 82.03
Proposed 91.07 88.85 87.76 88.85
Method

TABLE III: The Performance Comparison of Different

Ensemble Methods for Middle Finger Knuckle Identification.
Method Precision(%) | Recall(%) | F1-Score(%) | Test Accuracy(%)
Voting 89.07 84.80 83.20 84.80
Weighted 89.95 87.63 86.51 87.63
Average
Stacking 90.64 88.58 87.38 88.58
Average 91.07 88.85 87.76 88.85

87.63%, Fl-score to 86.51%, and test accuracy to 87.63%.
Stacking further enhanced the performance with a precision
of 90.64%, recall of 88.58%, Fl-score of 87.38%, and
test accuracy of 88.58%. The Average ensemble method
outperformed all others, achieving a precision of 91.07%,
recall of 88.85%, F1-score of 87.76%, and test accuracy of
88.85%.

TABLE IV: The False Reject Rate (FRR), False Acceptance
Rate (FAR) and Equal Error Rate (EER) values for models
are listed below. The model with the lowest FRR, FAR and
EER is indicated in bold.

Model FRR FAR EER
DenseNet121 0.3483 | 0.00184 | 0.1751
ResNet101 0.2828 | 0.00149 | 0.1424
InceptionV3 0.2834 | 0.00149 | 0.1416
ResNet50 0.2764 | 0.00146 | 0.1389
XceptionNet 0.2473 | 0.00130 | 0.1243
DenseNet201 0.1808 | 0.00095 | 0.0908
DenseNet169 0.1796 | 0.00095 | 0.0903
Voting Ensemble 0.1520 | 0.00080 | 0.0764
Weighted Average Ensemble | 0.1236 | 0.00065 | 0.0621
Stacking Ensemble 0.1156 | 0.00061 | 0.0581
Average Ensemble 0.1115 | 0.00059 | 0.0560

Table IV presents the False Reject Rate (FRR), False
Acceptance Rate (FAR), and Equal Error Rate (EER) val-
ues for different models used in the study. The table
includes several popular deep learning models, such as
DenseNet121, ResNetl01, InceptionV3, ResNet50, Xcep-
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tion, DenseNet201, and DenseNet169. It also includes the
performance of ensemble methods, including Voting En-
semble, Weighted Average Ensemble, Stacking Ensemble,
and Average Ensemble. The FRR, FAR, and EER values
are reported for each model. The FRR represents the rate
at which genuine samples are incorrectly rejected, while
the FAR indicates the rate at which impostor samples are
incorrectly accepted. The EER is the point at which the FRR
and FAR are equal, representing the overall performance
balance of the model.

By examining the values in the table, it can be observed
that the Average Ensemble achieves the lowest FRR of
0.1115, indicating a low rate of rejecting genuine samples.
Additionally, the Average Ensemble also achieves the lowest
EER of 0.0560, signifying the best overall balance between
FRR and FAR. The table provides a comprehensive overview
of the performance of individual models and ensemble meth-
ods, highlighting their effectiveness in terms of FRR, FAR,
and EER. This information can assist in selecting the most
suitable model or ensemble method for middle finger knuckle
identification tasks.
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Fig. 2: Training Loss.

In this Figure 2 Training loss graph, each model is repre-
sented by a different colored line. The vertical axis represents
the value of the training loss function, while the horizontal
axis represents the number of training epochs. We can see
that some models, such as the yellow (ResNetl01) and red
(ResNet50) lines, converge quickly and reach low final loss
values, while others, such as the green (InceptionV3) and
blue (DenseNetl121) lines, take longer to converge and have
higher final loss values. By comparing the performance of
these seven models using the training loss graph, we can gain
insights into each model’s relative strengths and weaknesses.

The training accuracy graph in Figure 3 illustrates the
performance of multiple deep learning models, with each
model represented by a unique colored line. The vertical
axis represents the model’s accuracy on the training data,
while the horizontal axis represents the number of training
epochs. We can see a lot of variation in the performance
of the different models. Some models, such as the red
(ResNet50) and purple (XceptionNet) lines, achieve high
accuracy early in training and maintain it throughout. Others,
such as the yellow (ResNetl01) and blue (DenseNetl21)
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lines, take longer to reach high accuracy and have more
fluctuations over time. The model represented by the yellow
line is highly stable, with consistent accuracy throughout the
training process.

V. CONCLUSIONS AND FUTURE WORKS

Biometric-based personal identification is a commonly em-
ployed approach to automatically recognize an individual’s
identity. The unique textural pattern formed by the bending
of the finger knuckle is highly distinguishable. This paper
introduced a novel approach to personal identification by uti-
lizing a 3D photometric image of the middle finger’s knuckle.
We employed ensemble learning techniques to develop an
authentication system that enhances the overall identifica-
tion performance. This method obtains exceptional accu-
racy levels, surpassing other state-of-the-art models while
maintaining an impressively low false acceptance rate. It
would be helpful for real-time and modest environments such
as workplaces, classrooms, or individual gadgets like cell
phones and laptops. In future research, the exploration of
image enrichment technologies can be pursued to identify
potential avenues for enhancing the obtained results.
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