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Abstract  

Deep learning algorithms particularly Convolutional Neural 

Networks (CNNs) are the state-of-the-art techniques for object 

detection, classification, segmentation and behaviour 

classification. These algorithms have extensive application across 

various domains including agriculture. However, cow 

identification in dairy farming still relies on methods like direct 

visual monitoring which are time consuming, costly and 

inaccurate; or use of invasive contact devices such as sensors 

which can cause discomfort during attachment or removal. This 

research compared three deep learning object detection models i.e. 

YOLOv5, YOLOv7 and YOLOv8, which were selected based on 

their performance in object detection tasks. We generated cow 

images from videos captured from a housed dairy cattle barn.  The 

dataset had 11,828 cow images, augmented to depict different 

illumination conditions and using makesense AI tool, we 

annotated the images in YOLO format, trained and validated the 

three models to visualize cow bounding boxes. Our approach 

demonstrates efficiency of the YOLOv8 model, achieving an 

accuracy of 94.7% and 93%  before and after data augmentation 

respectively. YOLOv8 baseline model was finetuned using the Ray 

Tune library achieving a mAP@0.50 score of 92.9%. This research 

makes a significant contribution in  the future research direction 

of the YOLO algorithm and highlights the practical 

implementation of deep learning models for cow detection, 

applicable in livestock management. 

Keywords— Convolutional Neural Networks, YOLO, Object 

Detection 

I. INTRODUCTION 

In computer vision, object detection is a crucial task that 
entails identifying object instances among image categories. 
Researchers are diligently working towards achieving optimal 
accuracy and speed in object detection models and remarkable 
breakthroughs have been made. Deep learning methods are 
categorized as one-stage detectors which include You Only 
Look Once (YOLO) and Single Shot Detectors (SSD) and 
two-stage detectors such as Region-based Convolutional 
Neural Networks (RCNN) among others. Fig. 1. Shows some 
of these methods and according to [20], two-stage detectors 
outperform one-stage detectors in terms of accuracy but with 
time trade-off. Generally, YOLO is adopted due to faster 
inference and not detection accuracy [20]. 

 

Fig. 1: Object detection methods 

1) Introduction to YOLO 
YOLO algorithm was published in Computer Vision and 
Pattern Recognition conference (CVPR) 2016 by [14] for real 
time object detection. According to [17], the algorithm detects 
objects with a single network pass by combining the two tasks 
in image analysis into one i.e. object classification and 
bounding box display [5]. Some of the traditional approaches 
run several passes using sliding windows followed by 
classifiers that run multiple times per image. Other advanced 
approaches divide the object detection task into two tasks: i.e. 
detecting possible regions with objects (region proposals) and 
running a classifier on them. 

Several computer vision models have utilized YOLO 
algorithm; these include video surveillance, autonomous 
driving, animal behaviour, drones and hospital applications as 
elaborated by [6]. Based on detection speed and accuracy, 
YOLO algorithm has performed remarkably well compared to 
other algorithms in real time object detection. YOLO has 
registered speeds of 45 - 155 Frames per Second (FPS) with 
fast YOLO doubling the mean Average Precision (mAP) of 
other algorithms [5], [14].   

There are many YOLO variants such as YOLOv1, 
YOLO9000v2, YOLOv3, YOLOv4, YOLOv5, YOLOv6, 
YOLOv7 and the relatively new YOLOv8 by the time of 
writing this paper, which is currently revolutionizing 
computer vision tasks with incredible features of high 
inference speed, accurate real time object detections and 
image segmentation at pixel level. 
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The main contribution of this paper is a comprehensive 
comparison of three YOLO variants, namely YOLOv5, 
YOLOv7 and YOLOv8 in object detection. The three models 
were selected due to their wide acceptance and superior 
performance compared to their earlier counterparts According 
to [13], there are substantial detection improvements offered 
by YOLOv6 but the variant is not scalable and is hard to train 
when compared to YOLOv5 and YOLOv7. For this reason, 
YOLOv6 was excluded in this study. YOLOv7 represents a 
relatively recent version and as we write this paper, YOLOv8 
is the most up-to-date YOLO variant. The small versions of 
the three variants were chosen for faster processing. The 
outcome of this research will provide valuable insights into 
the ongoing research direction of one-stage object detectors 
particularly YOLO algorithm. 

2) Background of YOLO Algorithm 
Looking at how YOLO has evolved, it is clear that researchers 
will continue to refine YOLO architectures. The 
enhancements have resulted into significant improvements of  
detection accuracy with some results exceeding those of two-
stage detectors [20]. The authors of YOLO [14], [15] and [16] 
have reframed object detection problem as a regression 
problem and not a classification problem. Two important 
CNN features help address the problem of accurate 
recognition of numerous objects and their precise location in 
object detection; these are parameter sharing and multiple 
filters [20]. To detect an object, YOLO algorithm divides the 
image/frame into grid cells, which predict bounding boxes 
marked with their position and dimensions, probability of an 
object in the grid and class probabilities [20]. Anchor boxes 
are predefined orientations of a 2D box expected from an 
object. 

Fig. 2 shows a simple a 3x3 grid YOLO model with a single 
class prediction from three classes. This generates an eight-
vector value (pc,bx,by,bh,bw,c1…cm) where:- pc is the 
probability that the predicted bounding box  

Fig. 2: YOLO output prediction [17] 

contains an object belonging to one of the categories c1...cn;  
bx,by, bh and bw are the predicted bounding box dimensions 
and c1…cn is the n different objects in the dataset (e.g. cow, 
person, dog or house). These can either have a value of zero 
(no object detected) or one (if an object is detected). 

To detect an object using YOLO, one pass on an image is 
executed to generate bounding box predictions by undertaking  
the following steps: - 

a) Create anchor boxes representing location, shape and size 
of objects to be predicted 

b) Generate a vector output with pc, bx, by, bh, bw, c1…cn 
information for each SxS grid cell  

c) Remove any predicted bounding box(es) whose pc is 
smaller than a defined threshold (no object present). 

d) Perform Non-Max-Suppression (NMS) for each object 
category “c” in [c1….cn], (bounding box with highest pc) 

3) Intersection over Union (IoU) 
A common attribute in detection models is Intersection over 
Union (IoU), which calculates localization accuracy and error 
range between ground truth and predictions. Union is the total 
area covered by the bounding boxes while intersection is their 
overlap area. To compute the overlap ratio to total area, we 
divide the intersection by the union as shown in (1), which is 
an estimated margin between the original bounding box 
(ground truth) and the predicted bounding box.  

𝐼𝑜𝑈 =  
Area of Overlap

Area of Union
    (1) 

4) Variants of YOLO Algorithm 
YOLO algorithm has evolved through refinements of previous 
models, to enhance performance by addressing previous 
limitations. Version enhancements mainly focus on network 
design changes, modification of loss functions, input 
resolution scaling and anchor box adaptations among others. 
Major YOLO variants are YOLOv1, YOLO2, YOLOv3, 
YOLOv4, YOLOv5, YOLOv6, YOLOv7 and YOLOv8 as 
summarized in Fig. 3. 

 

 

 

 

 

 

 

Fig. 3: YOLO Versions and Timelines 

YOLOv1 uses softmax function and the architecture was 
improved to create YOLOv2 by adding a batch normalization 
layer that achieved higher resolution classification, accuracy 
and efficiency [20]. Both YOLOv1 and YOLOv2 were trained 
on PASCAL VOC 2007/2012 datasets, which has 20 object 
categories with 303-4087 image range per category [10]. 
YOLOv3 up to YOLOv8 utilizes the Microsoft Common 
Objects in Context (MS COCO) dataset, created after 
ImageNet dataset  was critiqued for having objects said to be 
large and well centered [10]. The COCO dataset has 80 object 
categories with a wide range of scales including small objects 
and [10] indicates that the dataset may be replaced by other 
advanced datasets in future.  

In their comparative study, [12], indicate that YOLOv3 uses a 
logistic function to compute class probabilities and Darknet53 
to extract features from the input images resulting in better 
detection. YOLOv3 also uses two-class entropy loss for each 
category to minimize computational loss of softmax functions. 
YOLOv4 uses CSPDarknet53 backbone and has reported 
higher detection accuracy with minimum hardware 
requirements while compared to YOLOv3. 
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a) YOLOv5 

According to [12], replacing three layers in the YOLOv3 
algorithm and adding the focus layer brought about YOLOv5 
algorithm. This greatly increased forward and backward 
propagation while reducing the Compute Unified Device 
Architecture (CUDA) memory requirements. YOLOv5 was 
published a month after YOLOv4 was released with high 
speed and remarkable smaller size compared to YOLOv4 
[13]. YOLOv5 was selected in this study due to high 
performance levels reported in terms of speed and detection 
accuracy [11], [12], [13], [17], [21]. YOLOv5 model is similar 
to YOLOv3 and YOLOv4 models which generate three 
different feature map outputs to achieve multi scale 
predictions [12]. As shown in Fig. 4, the major improvement 
in YOLOv5 is the use of the focus structure and 
CSPDarknet53 as the backbone, thus eliminating the problem 
of gradient information in YOLOv3 and YOLOv4. This 
increased the model detection accuracy while reducing the 
network parameters and inference speed. In a bid to boost 
information flow and enhance localization accuracy, SPP and 
PANet were used as the neck in YOLOv5[12]. It also uses 
YOLOv3 head with Generalized Intersection over Union 
(GIoU) loss. YOLOv5 has been evaluated on the COCO 
dataset achieving an AP of 50.7% with an image size of 640 
pixels [17]. 

 

Fig. 4: YOLOv5 Architecture [12] 

YOLOv6 uses RepVGG style structure, EfficientRep 
backbone, Rep-Path Aggregation Network (PAN) anchor free 
paradigm, Simpler Optimal Transport Assignment (SimOTA) 
algorithm and Scale-Sensitive IoU (SIoU) bounding box 
regression loss function. 

b) YOLOv7 

Without using other datasets or pre-trained weights YOLOv7 
is trained entirely on the COCO dataset from scratch [18] as a 
real-time object detector. The algorithm performs better than 
previous variants with high accuracy of 56.8% and 30 FPS on 
Graphics Processing Units (GPU) V100. Like YOLOv5, 
YOLOv7 uses Extended Efficient Layer Aggregation 
Networks (E-ELAN) with expansion, shuffling and 
cardinality merging for better network learning abilities while 
preserving the initial gradient path [18]. YOLOv7 reduced 
parameters and computation cost greatly, which improved 
object detection accuracy and inference speed [13], [18]. 

c) YOLOv8 

This variant was published in January 2023 by the YOLOv5 
developers (Ultralytics), as an anchor-free model with a faster 
NMS and fewer box predictions. YOLOv8 has been evaluated 
on the COCO dataset achieving an AP of 53.9% for 640-pixel 

image sizes and 280 FPS speed on NVIDIA A100 and 
TensorRT. According to [1], YOLOv8 is designed to detect 
and perform instance segmentation on multiple objects in 
images and videos [1]. YOLOv8 architecture is similar to that 
of YOLOv5 consisting of a backbone, head and neck but 
YOLOv8 uses darknet-53 backbone network which is more 
accurate and faster compared to YOLOv7 [1].  YOLOv8 has 
a larger feature map, a feature pyramid network that identifies 
different object sizes and an enhanced CNN which boosts 
precision and detection speed [1]. 

According to [13], YOLOv6 accurately infers single images 
while YOLOv5 and YOLOv7 infer multiple images. [13] 
infers that, despite the great detection improvements in 
YOLOv6, the variant is not easy to train and lacks scalability 
when compared to YOLOv5 and YOLOv7. Informed by these 
findings, the experiments in this research were conducted 
using YOLOv5, YOLOv7 and YOLOv8 to visualize 
bounding boxes of predicted cow objects using TensorFlow 
Object Detection API.  

II. RELATED WORK 

To recognize cow behavior in real time, [5] implemented a   
YOLOv3 object detection model after gathering video and 
image data sets using several cameras installed at a livestock 
farm. To extract more features as required in object detection, 
they used an extra training layer and utilized the mish 
activation function with a smoother curve. Their model 
achieved 97.8% accuracy, 98.5% precision and 97.2% recall 
values. 

A cattle detection and localization Faster R-CNN algorithm 
was implemented by [3]. Using Unmanned Aerial Vehicles 
(UAVs) in an indoor barn set up, cows were monitored and 
video data was gathered. The videos were split into 40-frame 
streams, with a training/testing ratio of 9:1 and the model 
achieved a 98.13% detection accuracy. 

A Faster R-CNN dairy goats detection model from 
surveillance videos was implemented by [19]. Foreground 
segmentation was utilized to reduce static background impact 
in surveillance videos and to detect incomplete goats such as 
those standing on the edge. Background subtraction was used 
to detect moving objects and dimensionality reduction was 
done through pooling schemes achieving a 92.57% accuracy 
better than Faster R-CNN. One limitation to their study was  
insufficient labelled data and they recommend use of transfer 
learning.  

A YOLOv4 fast object detector in production systems to 
optimize parallel computations was designed by [2], who used 
a Tesla V100 GPU for the COCO dataset training. They 
achieved 43.5% (AP50:95) and 65.7% (AP50) results. 

A comparison on the performances of YOLOv3, YOLOv4, 
and YOLOv5l to detect safe landing locations for UAVs that 
failed while airborne was carried out by [12]. The models were 
trained on the Dataset for Object deTection in Aerial Images 
(DOTA) with 11,268 satellite and aerial images captured from 
Google earth. Their YOLOv5l model performed optimally 
with a mAP of 63.3% while YOLOv3 and YOLOv4 achieved 
60.7% and 46% respectively. 

A YOLOv5 model to detect heavy vehicles during winter in 
real time was developed by [7] and trained on colab. They 
developed a YOLOv5 notebook using Roboflow.ai trained on 
pre-trained COCO weights. After about 150 epochs, the model 
started overfitting and from their results, front cabin 
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components of heavy vehicles were detected better than the 
rear components. 

A prompt method to detect exotic plant seeds is proposed by 
[21], after building a database of 3000 seed images from 12 
invasive plants. To improve the YOLOv5 algorithm, a channel 
attention mechanism was added and their experiments 
revealed an improvement in classification and detection 
accuracy with a slight increase in parameters. Their YOLOv5 
Efficient Channel Attention Network (ECA-Net) achieved a 
93.96% precision, 90.1% Recall, 82.77% mAP@0.5:0.95 and 
91.67% mAP@0.5 prediction results. 

A TensorFlow object detection API, utilizing SSD and Faster 
R-CNN with Inception V2 object detection structure libraries 
for feature extraction was developed by [4]. The models were 
trained to predict cow object bounding boxes on image frames 
achieving detection confidence scores of 90% and 50% 
respectively and the objects differing in colour were hard to 
detect as per the results.  

A deep learning CNN task assistant model was implemented 
by [11], using YOLOv5s and YOLOv5m networks to 
recognize parts of an automobile. In order to access google 
colab virtual machine Tesla P100 GPU for model training, 
they used a laptop computer.  A total of 582 car engine images 
were used to demonstrate how YOLOv5 models can detect 
small car parts with high accuracy in real time video streams.  

The YOLOv7 object detection network was added to a Deep 
SORT tracking algorithm by [22] to develop a visual object 
tracking model. To evaluate their model, they used several 
parameters to evaluate the models and YOLOv7 model 
achieved higher scores compared to YOLOv5. 

To detect helmet wearing violations in real time from video 
frames, [1] developed a robust YOLOv8 model with few 
annotations on their data (few-shot sampling). Their 
experiments achieved a mAP score of 58.61% on 
experimental validation data.  

To detect small pests early, [8] trained Yolov3, YOLOv3-
Tiny, YOLOv4, YOLOv4-Tiny, YOLOv6, and YOLOv8 
models using 9,875 pest images taken under different 
illumination conditions and annotated in YOLO format. 
YOLOv8 model was executed for real time pest detection in 
Android application having the best mAP of  84.7%.  

III. MATERIALS AND METHODS 

1) Data Collection and Description 
A dataset containing 5904 cow images was generated from 
five videos captured using a ground video camera (Canon 
EOS 750D DSLR) with a focal length of 200mm. A portable 
tripod monopod (Kingjoy VT-880 2-in-1) whose 
specifications are shown in Fig. 5 with various height 
adjustments was used to mount the camera in different 
positions of the cowshed for clear side views.   

 

Fig. 5: Camera Tripod Specifications 

The observed scene was a small-scale commercial dairy farm 
(Gracer farm) 25 km North East of Nairobi city between 26th 
June and 28th July, 2021. There were eighteen (18) dairy cows 
housed in the roofed cowshed and Fig. 6 shows the barn layout 
which was approximately 16m by 10m.  

 
Fig.6: Cow shed layout (Aerial View) 

Data augmentation to depict different illumination conditions 
generated 11,828 images and image resolution was downsized 
from 1920x1080 pixels to 640x640 pixels for faster 
processing since high resolution images require more 
computational resources. The images were used as input to 
train the models at a ratio of 80:20 for training and validation 
datasets i.e. 9834 (training images) and 1994(testing images). 
A 379-frame video stream was used for real time detection. 

2) Data Preprocessing and Algorithm Deployment Work 

flow for Cow Detection 
To annotate the images, rectangular shapes of the 11,828 cow 
images were extracted using the makesense AI tool, and the 
annotations were exported in YOLO format. Fig. 7 shows an 
image sample taken from the dataset and the same image after 
annotation.  

  

Fig. 7: Sample cow image before and after annotation 

Annotated images were uploaded in a google drive folder and 
python 3.7 was used for platform programming using Google 
colab notebooks, which mainly offered CUDA Tesla T4 GPU 
with 15101.8MB video memory.  Fig. 8 shows the cow 
detection work flow from data collection, input,  
preprocessing to output evaluation.  

 

 

 

 

 

 

 

Fig. 8: Cow Detection Workflow 
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3) Experiment Setup 
To run the experiments, we accessed Google colab via Google 
chrome web browser using a HP Notebook Intel(R) Core 
(TM) i5-7200U CPU @ 2.50GHz 2.70 GHz laptop with 8GB 
RAM. We used pre-trained COCO weights to train, validate 
and test the detection models and we saved the training results 
in Google drive for future use. 

a) Microsoft COCO Dataset 

YOLOv3 up to YOLOv8 models are trained using the COCO 
dataset, whereby, the AP is computed from multiple IoU 
values to guarantee detailed model performance evaluation 
and also from a common AP metric known as AP@50, 
computed for a single IoU threshold of 0.5[17]. As 
documented by [17], computing AP in COCO datasets 
involves:- using different confidence thresholds of the 
model’s class predictions to generate Precision-Recall (PR) 
curve; calculating the AP thresholds for each of the 80 
categories; incrementing IoU levels from 0.50 to 0.95 with 
0.05 to compute the AP; computing mAPs from IoU thresholds 
across the 80 categories and computing the general AP (mean 
AP values for all IoU thresholds). 

b) Other parameters used 

Optimizers utilize back propagation to minimize loss and we 
chose Adaptive Moment estimation (Adam) optimizer, which 
according to [21], is more suited for small datasets. Random 
neuron drop-out prevents overfitting and a dropout rate of 0.2 
of the data was used. A low learning rate with more epochs 
enables the model to easily reach a minimum point and 
converge effectively. A learning rate of 0.01 was used to run 
the models for 50 epochs before and after data augmentation. 
Warm-up epochs were set at 3, IoU at 0.5, momentum at 0.937 
and data loaders at 4. We resized image input size to 640 with 
a 64-batch input size. 

IV. MODEL PERFORMANCE EVALUATION 

Popular detection model performance indicators are mAP, 
Precision, Recall, mAP and FPS which were computed using 
equations (2), (3) and (4) respectively. After predictions, the 
objects that are correctly identified are known as True 
Positives (TP) while negative objects incorrectly identified as 
positives are False Negatives (FN). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
TP

TP + FP
    (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
TP

TP + FN
    (3) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
TP + TN

TP + TN + FP + FN
   (4) 

The AP value indicates the accuracy in a category and the 
mAP is a single mean value computed from the AP measures 
across all categories in the model training. The two metrics 
were computed using equations (5) and (6), 

AP = ∫ 𝑃(𝑅)𝑑𝑅
1

0
    (5) 

mAP = 
∑ (𝐴𝑃)𝑁

𝑖=1

𝑁
    (6) 

where P, R represents the precision and recall values 
respectively while N is the number of classes in the dataset. 

1) Results and Discussion 
Table 1 and 2 shows results for the executions before and after 
data augmentation respectively.  

a) Precision 

YOLOv8s had the highest TP value of 88.5% and 91.1% for 
both executions 

b) Recall 

YOLOv5s outperformed YOLOv7-tiny and YOLOv8s with 
89.6% and 87.5% recall values respectively for both 
executions. 

c) Accuracy (mAP@0.5:0.95) 

YOLOv8s outperformed YOLOv5s and YOLOv7-tiny with a 
mAP@0.5:0.95 of 72.9% and 71.9% respectively.  

d) Accuracy (mAP@0.5) 

YOLOv8s outperformed YOLOv5s and YOLOv7-tiny for the 
two executions with a mAP of 94.7%, and 93% respectively. 

e) Training and Inference Time 

YOLOv5s outperformed YOLOv7-tiny and YOLOv8s for 
both training and inference time for the first execution. In the 
second execution YOLOv8s was the fastest. The variance 
could be due to the different GPU resources provided by 
Google colab during training.  

2) Hyperparameter Optimization 
Using Ray Tune library, we fine-tuned our custom YOLOv8s 
model to align precision and generalization for adaptability to 
unseen data. A learning rate in the range of 1e-5 to 1e-3 and 
batch sizes of 8,16, 32 and 64 within 10 different 
configuration trials were used and evaluated on the dataset. 
The best configuration emerged at a learning rate of 
0.0009920872863737676 and a batch size of 64. Nine trials 
were terminated and the total running time was 24 minutes 41 
seconds. The fine-tuned model’s mAP@0.50 score was 92.9% 
lower than the baseline 93% which could mean that the 
baseline model was overfitting to the training dataset 
potentially compromising real-world applicability. Fig. 9 
shows partial prediction results after fine-tuning. Fig. 10 and 
Fig 11 shows partial prediction results from selected variants 
with YOLOv8s demonstrating image segmentation. 

 

 Fig. 9: Partial Prediction results after fine-tuning 

TABLE I.  PERFORMANCE RESULTS BEFORE  DATA AUGMENTATION  

Metric 
Model 

YOLOv5s YOLOv7-tiny YOLOv8s 

Precision (%) 88.4 89.7 88.5 

Recall (%) 89.6 83.5 88.5 

mAP @ 0.5:0.95 (%) 71.9 64.6 72.9 

mAP @ 0.5 (%) 94.1 91.3 94.7 

Training time (hours) 0.317 4.982 2.734 

Inference time (ms) 6.8 11.312 12.1 

TABLE II:  PERFORMANCE RESULTS AFTER DATA AUGMENTATION 

Metric 
Model 

YOLOv5s YOLOv7-tiny YOLOv8s 

Precision (%) 90.2  84.5 91.1 

Recall (%) 87.5  78.7 86.1 

mAP @ 0.5:0.95 (%) 70.5  51.7 71.9 

mAP @ 0.5 (%) 92.9 85.9 93 

Training time (hours) 3.470 2.736 1.921 

Inference time (ms) 10.0 12.181 9.7 
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Fig. 10: Prediction and segmentation results of YOLOv8 

 

Fig. 11: Partial YOLOv5 and YOLOv7 prediction results  

In addition to performing instance segmentation, YOLOv8s 
demonstrated a better accuracy and precision than YOLOv5s 
and YOLOv7-tiny. However, YOLOv5s model achieved 
faster training and inference time during the first execution. 

V. CONCLUSION 

This study compared the performance of three YOLO variants 
using four metrics (precision, recall, mAP and time). The 
results will benefit researchers seeking to use these models for 
similar detection tasks using the same metrics. These cow 
detection models have a promising potential application in 
assisting farmers manage their small-scale dairy farms. For 
further research, bigger datasets need to be tested on the fine-
tuned model to showcase model performance, robustness and 
efficiency.  
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