

Comparing Deep Learning Object detection

Methods for Real Time Cow Detection

Gichuki Wambui Martha

Computing Department: School of Computing & Information

Technology

Jomo Kenyatta University of Agriculture & Technology

Nairobi, Kenya

mgichuki@jkuat.ac.ke

Assoc. Prof Supavadee Aramvith, Ph.D

Department of Electrical Engineering: Faculty of Engineering

Chulalongkorn University

Bangkok, Thailand

supavadee.a@chula.ac.th

 Prof Ronald Waweru Mwangi, Ph. D

Computing Department: School of Computing & Information

Technology

Jomo Kenyatta University of Agriculture & Technology

Nairobi, Kenya

waweru_mwangi@icsit.jkuat.ac.ke

Dr. Richard Rimiru Ph. D

Computing Department: School of Computing & Information

Technology

Jomo Kenyatta University of Agriculture & Technology

Nairobi, Kenya

rimiru@jkuat.ac.ke

Abstract

Deep learning algorithms particularly Convolutional Neural

Networks (CNNs) are the state-of-the-art techniques for object

detection, classification, segmentation and behaviour

classification. These algorithms have extensive application across

various domains including agriculture. However, cow

identification in dairy farming still relies on methods like direct

visual monitoring which are time consuming, costly and

inaccurate; or use of invasive contact devices such as sensors

which can cause discomfort during attachment or removal. This

research compared three deep learning object detection models i.e.

YOLOv5, YOLOv7 and YOLOv8, which were selected based on

their performance in object detection tasks. We generated cow

images from videos captured from a housed dairy cattle barn. The

dataset had 11,828 cow images, augmented to depict different

illumination conditions and using makesense AI tool, we

annotated the images in YOLO format, trained and validated the

three models to visualize cow bounding boxes. Our approach

demonstrates efficiency of the YOLOv8 model, achieving an

accuracy of 94.7% and 93% before and after data augmentation

respectively. YOLOv8 baseline model was finetuned using the Ray

Tune library achieving a mAP@0.50 score of 92.9%. This research

makes a significant contribution in the future research direction

of the YOLO algorithm and highlights the practical

implementation of deep learning models for cow detection,

applicable in livestock management.

Keywords— Convolutional Neural Networks, YOLO, Object

Detection

I. INTRODUCTION

In computer vision, object detection is a crucial task that
entails identifying object instances among image categories.
Researchers are diligently working towards achieving optimal
accuracy and speed in object detection models and remarkable
breakthroughs have been made. Deep learning methods are
categorized as one-stage detectors which include You Only
Look Once (YOLO) and Single Shot Detectors (SSD) and
two-stage detectors such as Region-based Convolutional
Neural Networks (RCNN) among others. Fig. 1. Shows some
of these methods and according to [20], two-stage detectors
outperform one-stage detectors in terms of accuracy but with
time trade-off. Generally, YOLO is adopted due to faster
inference and not detection accuracy [20].

Fig. 1: Object detection methods

1) Introduction to YOLO
YOLO algorithm was published in Computer Vision and
Pattern Recognition conference (CVPR) 2016 by [14] for real
time object detection. According to [17], the algorithm detects
objects with a single network pass by combining the two tasks
in image analysis into one i.e. object classification and
bounding box display [5]. Some of the traditional approaches
run several passes using sliding windows followed by
classifiers that run multiple times per image. Other advanced
approaches divide the object detection task into two tasks: i.e.
detecting possible regions with objects (region proposals) and
running a classifier on them.

Several computer vision models have utilized YOLO
algorithm; these include video surveillance, autonomous
driving, animal behaviour, drones and hospital applications as
elaborated by [6]. Based on detection speed and accuracy,
YOLO algorithm has performed remarkably well compared to
other algorithms in real time object detection. YOLO has
registered speeds of 45 - 155 Frames per Second (FPS) with
fast YOLO doubling the mean Average Precision (mAP) of
other algorithms [5], [14].

There are many YOLO variants such as YOLOv1,
YOLO9000v2, YOLOv3, YOLOv4, YOLOv5, YOLOv6,
YOLOv7 and the relatively new YOLOv8 by the time of
writing this paper, which is currently revolutionizing
computer vision tasks with incredible features of high
inference speed, accurate real time object detections and
image segmentation at pixel level.

TENCON 2023 - 2023 IEEE Region 10 Conference (TENCON)
31 Oct - 3 Nov 2023. Chiang Mai, Thailand

FriMo2J.5

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 1186

The main contribution of this paper is a comprehensive
comparison of three YOLO variants, namely YOLOv5,
YOLOv7 and YOLOv8 in object detection. The three models
were selected due to their wide acceptance and superior
performance compared to their earlier counterparts According
to [13], there are substantial detection improvements offered
by YOLOv6 but the variant is not scalable and is hard to train
when compared to YOLOv5 and YOLOv7. For this reason,
YOLOv6 was excluded in this study. YOLOv7 represents a
relatively recent version and as we write this paper, YOLOv8
is the most up-to-date YOLO variant. The small versions of
the three variants were chosen for faster processing. The
outcome of this research will provide valuable insights into
the ongoing research direction of one-stage object detectors
particularly YOLO algorithm.

2) Background of YOLO Algorithm
Looking at how YOLO has evolved, it is clear that researchers
will continue to refine YOLO architectures. The
enhancements have resulted into significant improvements of
detection accuracy with some results exceeding those of two-
stage detectors [20]. The authors of YOLO [14], [15] and [16]
have reframed object detection problem as a regression
problem and not a classification problem. Two important
CNN features help address the problem of accurate
recognition of numerous objects and their precise location in
object detection; these are parameter sharing and multiple
filters [20]. To detect an object, YOLO algorithm divides the
image/frame into grid cells, which predict bounding boxes
marked with their position and dimensions, probability of an
object in the grid and class probabilities [20]. Anchor boxes
are predefined orientations of a 2D box expected from an
object.

Fig. 2 shows a simple a 3x3 grid YOLO model with a single
class prediction from three classes. This generates an eight-
vector value (pc,bx,by,bh,bw,c1…cm) where:- pc is the
probability that the predicted bounding box

Fig. 2: YOLO output prediction [17]

contains an object belonging to one of the categories c1...cn;
bx,by, bh and bw are the predicted bounding box dimensions
and c1…cn is the n different objects in the dataset (e.g. cow,
person, dog or house). These can either have a value of zero
(no object detected) or one (if an object is detected).

To detect an object using YOLO, one pass on an image is
executed to generate bounding box predictions by undertaking
the following steps: -

a) Create anchor boxes representing location, shape and size
of objects to be predicted

b) Generate a vector output with pc, bx, by, bh, bw, c1…cn
information for each SxS grid cell

c) Remove any predicted bounding box(es) whose pc is
smaller than a defined threshold (no object present).

d) Perform Non-Max-Suppression (NMS) for each object
category “c” in [c1….cn], (bounding box with highest pc)

3) Intersection over Union (IoU)
A common attribute in detection models is Intersection over
Union (IoU), which calculates localization accuracy and error
range between ground truth and predictions. Union is the total
area covered by the bounding boxes while intersection is their
overlap area. To compute the overlap ratio to total area, we
divide the intersection by the union as shown in (1), which is
an estimated margin between the original bounding box
(ground truth) and the predicted bounding box.

𝐼𝑜𝑈 =
Area of Overlap

Area of Union
 (1)

4) Variants of YOLO Algorithm
YOLO algorithm has evolved through refinements of previous
models, to enhance performance by addressing previous
limitations. Version enhancements mainly focus on network
design changes, modification of loss functions, input
resolution scaling and anchor box adaptations among others.
Major YOLO variants are YOLOv1, YOLO2, YOLOv3,
YOLOv4, YOLOv5, YOLOv6, YOLOv7 and YOLOv8 as
summarized in Fig. 3.

Fig. 3: YOLO Versions and Timelines

YOLOv1 uses softmax function and the architecture was
improved to create YOLOv2 by adding a batch normalization
layer that achieved higher resolution classification, accuracy
and efficiency [20]. Both YOLOv1 and YOLOv2 were trained
on PASCAL VOC 2007/2012 datasets, which has 20 object
categories with 303-4087 image range per category [10].
YOLOv3 up to YOLOv8 utilizes the Microsoft Common
Objects in Context (MS COCO) dataset, created after
ImageNet dataset was critiqued for having objects said to be
large and well centered [10]. The COCO dataset has 80 object
categories with a wide range of scales including small objects
and [10] indicates that the dataset may be replaced by other
advanced datasets in future.

In their comparative study, [12], indicate that YOLOv3 uses a
logistic function to compute class probabilities and Darknet53
to extract features from the input images resulting in better
detection. YOLOv3 also uses two-class entropy loss for each
category to minimize computational loss of softmax functions.
YOLOv4 uses CSPDarknet53 backbone and has reported
higher detection accuracy with minimum hardware
requirements while compared to YOLOv3.

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 1187

a) YOLOv5

According to [12], replacing three layers in the YOLOv3
algorithm and adding the focus layer brought about YOLOv5
algorithm. This greatly increased forward and backward
propagation while reducing the Compute Unified Device
Architecture (CUDA) memory requirements. YOLOv5 was
published a month after YOLOv4 was released with high
speed and remarkable smaller size compared to YOLOv4
[13]. YOLOv5 was selected in this study due to high
performance levels reported in terms of speed and detection
accuracy [11], [12], [13], [17], [21]. YOLOv5 model is similar
to YOLOv3 and YOLOv4 models which generate three
different feature map outputs to achieve multi scale
predictions [12]. As shown in Fig. 4, the major improvement
in YOLOv5 is the use of the focus structure and
CSPDarknet53 as the backbone, thus eliminating the problem
of gradient information in YOLOv3 and YOLOv4. This
increased the model detection accuracy while reducing the
network parameters and inference speed. In a bid to boost
information flow and enhance localization accuracy, SPP and
PANet were used as the neck in YOLOv5[12]. It also uses
YOLOv3 head with Generalized Intersection over Union
(GIoU) loss. YOLOv5 has been evaluated on the COCO
dataset achieving an AP of 50.7% with an image size of 640
pixels [17].

Fig. 4: YOLOv5 Architecture [12]

YOLOv6 uses RepVGG style structure, EfficientRep
backbone, Rep-Path Aggregation Network (PAN) anchor free
paradigm, Simpler Optimal Transport Assignment (SimOTA)
algorithm and Scale-Sensitive IoU (SIoU) bounding box
regression loss function.

b) YOLOv7

Without using other datasets or pre-trained weights YOLOv7
is trained entirely on the COCO dataset from scratch [18] as a
real-time object detector. The algorithm performs better than
previous variants with high accuracy of 56.8% and 30 FPS on
Graphics Processing Units (GPU) V100. Like YOLOv5,
YOLOv7 uses Extended Efficient Layer Aggregation
Networks (E-ELAN) with expansion, shuffling and
cardinality merging for better network learning abilities while
preserving the initial gradient path [18]. YOLOv7 reduced
parameters and computation cost greatly, which improved
object detection accuracy and inference speed [13], [18].

c) YOLOv8

This variant was published in January 2023 by the YOLOv5
developers (Ultralytics), as an anchor-free model with a faster
NMS and fewer box predictions. YOLOv8 has been evaluated
on the COCO dataset achieving an AP of 53.9% for 640-pixel

image sizes and 280 FPS speed on NVIDIA A100 and
TensorRT. According to [1], YOLOv8 is designed to detect
and perform instance segmentation on multiple objects in
images and videos [1]. YOLOv8 architecture is similar to that
of YOLOv5 consisting of a backbone, head and neck but
YOLOv8 uses darknet-53 backbone network which is more
accurate and faster compared to YOLOv7 [1]. YOLOv8 has
a larger feature map, a feature pyramid network that identifies
different object sizes and an enhanced CNN which boosts
precision and detection speed [1].

According to [13], YOLOv6 accurately infers single images
while YOLOv5 and YOLOv7 infer multiple images. [13]
infers that, despite the great detection improvements in
YOLOv6, the variant is not easy to train and lacks scalability
when compared to YOLOv5 and YOLOv7. Informed by these
findings, the experiments in this research were conducted
using YOLOv5, YOLOv7 and YOLOv8 to visualize
bounding boxes of predicted cow objects using TensorFlow
Object Detection API.

II. RELATED WORK

To recognize cow behavior in real time, [5] implemented a
YOLOv3 object detection model after gathering video and
image data sets using several cameras installed at a livestock
farm. To extract more features as required in object detection,
they used an extra training layer and utilized the mish
activation function with a smoother curve. Their model
achieved 97.8% accuracy, 98.5% precision and 97.2% recall
values.

A cattle detection and localization Faster R-CNN algorithm
was implemented by [3]. Using Unmanned Aerial Vehicles
(UAVs) in an indoor barn set up, cows were monitored and
video data was gathered. The videos were split into 40-frame
streams, with a training/testing ratio of 9:1 and the model
achieved a 98.13% detection accuracy.

A Faster R-CNN dairy goats detection model from
surveillance videos was implemented by [19]. Foreground
segmentation was utilized to reduce static background impact
in surveillance videos and to detect incomplete goats such as
those standing on the edge. Background subtraction was used
to detect moving objects and dimensionality reduction was
done through pooling schemes achieving a 92.57% accuracy
better than Faster R-CNN. One limitation to their study was
insufficient labelled data and they recommend use of transfer
learning.

A YOLOv4 fast object detector in production systems to
optimize parallel computations was designed by [2], who used
a Tesla V100 GPU for the COCO dataset training. They
achieved 43.5% (AP50:95) and 65.7% (AP50) results.

A comparison on the performances of YOLOv3, YOLOv4,
and YOLOv5l to detect safe landing locations for UAVs that
failed while airborne was carried out by [12]. The models were
trained on the Dataset for Object deTection in Aerial Images
(DOTA) with 11,268 satellite and aerial images captured from
Google earth. Their YOLOv5l model performed optimally
with a mAP of 63.3% while YOLOv3 and YOLOv4 achieved
60.7% and 46% respectively.

A YOLOv5 model to detect heavy vehicles during winter in
real time was developed by [7] and trained on colab. They
developed a YOLOv5 notebook using Roboflow.ai trained on
pre-trained COCO weights. After about 150 epochs, the model
started overfitting and from their results, front cabin

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 1188

components of heavy vehicles were detected better than the
rear components.

A prompt method to detect exotic plant seeds is proposed by
[21], after building a database of 3000 seed images from 12
invasive plants. To improve the YOLOv5 algorithm, a channel
attention mechanism was added and their experiments
revealed an improvement in classification and detection
accuracy with a slight increase in parameters. Their YOLOv5
Efficient Channel Attention Network (ECA-Net) achieved a
93.96% precision, 90.1% Recall, 82.77% mAP@0.5:0.95 and
91.67% mAP@0.5 prediction results.

A TensorFlow object detection API, utilizing SSD and Faster
R-CNN with Inception V2 object detection structure libraries
for feature extraction was developed by [4]. The models were
trained to predict cow object bounding boxes on image frames
achieving detection confidence scores of 90% and 50%
respectively and the objects differing in colour were hard to
detect as per the results.

A deep learning CNN task assistant model was implemented
by [11], using YOLOv5s and YOLOv5m networks to
recognize parts of an automobile. In order to access google
colab virtual machine Tesla P100 GPU for model training,
they used a laptop computer. A total of 582 car engine images
were used to demonstrate how YOLOv5 models can detect
small car parts with high accuracy in real time video streams.

The YOLOv7 object detection network was added to a Deep
SORT tracking algorithm by [22] to develop a visual object
tracking model. To evaluate their model, they used several
parameters to evaluate the models and YOLOv7 model
achieved higher scores compared to YOLOv5.

To detect helmet wearing violations in real time from video
frames, [1] developed a robust YOLOv8 model with few
annotations on their data (few-shot sampling). Their
experiments achieved a mAP score of 58.61% on
experimental validation data.

To detect small pests early, [8] trained Yolov3, YOLOv3-
Tiny, YOLOv4, YOLOv4-Tiny, YOLOv6, and YOLOv8
models using 9,875 pest images taken under different
illumination conditions and annotated in YOLO format.
YOLOv8 model was executed for real time pest detection in
Android application having the best mAP of 84.7%.

III. MATERIALS AND METHODS

1) Data Collection and Description
A dataset containing 5904 cow images was generated from
five videos captured using a ground video camera (Canon
EOS 750D DSLR) with a focal length of 200mm. A portable
tripod monopod (Kingjoy VT-880 2-in-1) whose
specifications are shown in Fig. 5 with various height
adjustments was used to mount the camera in different
positions of the cowshed for clear side views.

Fig. 5: Camera Tripod Specifications

The observed scene was a small-scale commercial dairy farm
(Gracer farm) 25 km North East of Nairobi city between 26th
June and 28th July, 2021. There were eighteen (18) dairy cows
housed in the roofed cowshed and Fig. 6 shows the barn layout
which was approximately 16m by 10m.

Fig.6: Cow shed layout (Aerial View)

Data augmentation to depict different illumination conditions
generated 11,828 images and image resolution was downsized
from 1920x1080 pixels to 640x640 pixels for faster
processing since high resolution images require more
computational resources. The images were used as input to
train the models at a ratio of 80:20 for training and validation
datasets i.e. 9834 (training images) and 1994(testing images).
A 379-frame video stream was used for real time detection.

2) Data Preprocessing and Algorithm Deployment Work

flow for Cow Detection
To annotate the images, rectangular shapes of the 11,828 cow
images were extracted using the makesense AI tool, and the
annotations were exported in YOLO format. Fig. 7 shows an
image sample taken from the dataset and the same image after
annotation.

Fig. 7: Sample cow image before and after annotation

Annotated images were uploaded in a google drive folder and
python 3.7 was used for platform programming using Google
colab notebooks, which mainly offered CUDA Tesla T4 GPU
with 15101.8MB video memory. Fig. 8 shows the cow
detection work flow from data collection, input,
preprocessing to output evaluation.

Fig. 8: Cow Detection Workflow

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 1189

3) Experiment Setup
To run the experiments, we accessed Google colab via Google
chrome web browser using a HP Notebook Intel(R) Core
(TM) i5-7200U CPU @ 2.50GHz 2.70 GHz laptop with 8GB
RAM. We used pre-trained COCO weights to train, validate
and test the detection models and we saved the training results
in Google drive for future use.

a) Microsoft COCO Dataset

YOLOv3 up to YOLOv8 models are trained using the COCO
dataset, whereby, the AP is computed from multiple IoU
values to guarantee detailed model performance evaluation
and also from a common AP metric known as AP@50,
computed for a single IoU threshold of 0.5[17]. As
documented by [17], computing AP in COCO datasets
involves:- using different confidence thresholds of the
model’s class predictions to generate Precision-Recall (PR)
curve; calculating the AP thresholds for each of the 80
categories; incrementing IoU levels from 0.50 to 0.95 with
0.05 to compute the AP; computing mAPs from IoU thresholds
across the 80 categories and computing the general AP (mean
AP values for all IoU thresholds).

b) Other parameters used

Optimizers utilize back propagation to minimize loss and we
chose Adaptive Moment estimation (Adam) optimizer, which
according to [21], is more suited for small datasets. Random
neuron drop-out prevents overfitting and a dropout rate of 0.2
of the data was used. A low learning rate with more epochs
enables the model to easily reach a minimum point and
converge effectively. A learning rate of 0.01 was used to run
the models for 50 epochs before and after data augmentation.
Warm-up epochs were set at 3, IoU at 0.5, momentum at 0.937
and data loaders at 4. We resized image input size to 640 with
a 64-batch input size.

IV. MODEL PERFORMANCE EVALUATION

Popular detection model performance indicators are mAP,
Precision, Recall, mAP and FPS which were computed using
equations (2), (3) and (4) respectively. After predictions, the
objects that are correctly identified are known as True
Positives (TP) while negative objects incorrectly identified as
positives are False Negatives (FN).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP + FP
 (2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP + FN
 (3)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP + TN

TP + TN + FP + FN
 (4)

The AP value indicates the accuracy in a category and the
mAP is a single mean value computed from the AP measures
across all categories in the model training. The two metrics
were computed using equations (5) and (6),

AP = ∫ 𝑃(𝑅)𝑑𝑅
1

0
 (5)

mAP =
∑ (𝐴𝑃)𝑁

𝑖=1

𝑁
 (6)

where P, R represents the precision and recall values
respectively while N is the number of classes in the dataset.

1) Results and Discussion
Table 1 and 2 shows results for the executions before and after
data augmentation respectively.

a) Precision

YOLOv8s had the highest TP value of 88.5% and 91.1% for
both executions

b) Recall

YOLOv5s outperformed YOLOv7-tiny and YOLOv8s with
89.6% and 87.5% recall values respectively for both
executions.

c) Accuracy (mAP@0.5:0.95)

YOLOv8s outperformed YOLOv5s and YOLOv7-tiny with a
mAP@0.5:0.95 of 72.9% and 71.9% respectively.

d) Accuracy (mAP@0.5)

YOLOv8s outperformed YOLOv5s and YOLOv7-tiny for the
two executions with a mAP of 94.7%, and 93% respectively.

e) Training and Inference Time

YOLOv5s outperformed YOLOv7-tiny and YOLOv8s for
both training and inference time for the first execution. In the
second execution YOLOv8s was the fastest. The variance
could be due to the different GPU resources provided by
Google colab during training.

2) Hyperparameter Optimization
Using Ray Tune library, we fine-tuned our custom YOLOv8s
model to align precision and generalization for adaptability to
unseen data. A learning rate in the range of 1e-5 to 1e-3 and
batch sizes of 8,16, 32 and 64 within 10 different
configuration trials were used and evaluated on the dataset.
The best configuration emerged at a learning rate of
0.0009920872863737676 and a batch size of 64. Nine trials
were terminated and the total running time was 24 minutes 41
seconds. The fine-tuned model’s mAP@0.50 score was 92.9%
lower than the baseline 93% which could mean that the
baseline model was overfitting to the training dataset
potentially compromising real-world applicability. Fig. 9
shows partial prediction results after fine-tuning. Fig. 10 and
Fig 11 shows partial prediction results from selected variants
with YOLOv8s demonstrating image segmentation.

 Fig. 9: Partial Prediction results after fine-tuning

TABLE I. PERFORMANCE RESULTS BEFORE DATA AUGMENTATION

Metric
Model

YOLOv5s YOLOv7-tiny YOLOv8s

Precision (%) 88.4 89.7 88.5

Recall (%) 89.6 83.5 88.5

mAP @ 0.5:0.95 (%) 71.9 64.6 72.9

mAP @ 0.5 (%) 94.1 91.3 94.7

Training time (hours) 0.317 4.982 2.734

Inference time (ms) 6.8 11.312 12.1

TABLE II: PERFORMANCE RESULTS AFTER DATA AUGMENTATION

Metric
Model

YOLOv5s YOLOv7-tiny YOLOv8s

Precision (%) 90.2 84.5 91.1

Recall (%) 87.5 78.7 86.1

mAP @ 0.5:0.95 (%) 70.5 51.7 71.9

mAP @ 0.5 (%) 92.9 85.9 93

Training time (hours) 3.470 2.736 1.921

Inference time (ms) 10.0 12.181 9.7

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 1190

Fig. 10: Prediction and segmentation results of YOLOv8

Fig. 11: Partial YOLOv5 and YOLOv7 prediction results

In addition to performing instance segmentation, YOLOv8s
demonstrated a better accuracy and precision than YOLOv5s
and YOLOv7-tiny. However, YOLOv5s model achieved
faster training and inference time during the first execution.

V. CONCLUSION

This study compared the performance of three YOLO variants
using four metrics (precision, recall, mAP and time). The
results will benefit researchers seeking to use these models for
similar detection tasks using the same metrics. These cow
detection models have a promising potential application in
assisting farmers manage their small-scale dairy farms. For
further research, bigger datasets need to be tested on the fine-
tuned model to showcase model performance, robustness and
efficiency.

VI. ACKNOWLEDGMENTS

This work is supported by JICA Project for AUN/SEED-Net

CR-X project titled AI-Based Video Analytics for Smart

Farming.

VII. REFERENCES

[1]. Aboah, A., Wang, B., Bagci, U. & Adu-Gyamfi, Y. (2023).
Real-time multi-class helmet violation detection using few shot
data sampling techniques and yolov8. arXiv preprint
arXiv:2304.08256.

[2]. Alexey, B., Chien-Yao, W., & Hong-Yuan, M. L. (2020).
Yolov4: Optimal speed and accuracy of object detection. arXiv
preprint arXiv:2004.10934, 2(7).

[3]. Andrew, W., Greatwood, C., & Burghardt, T. (2017). Visual
localisation and individual identification of holstein friesian cattle
via deep learning. Paper presented at the Proceedings of the IEEE
International Conference on Computer Vision Workshops.

[4]. Arago, N. M., Alvarez, C. I., Mabale, A. G., Legista, C. G.,
Repiso, N. E., Robles, R. R. A., . . . Velasco, J. (2020). Automated
estrus detection for dairy cattle through neural networks and
bounding box corner analysis. Int. J. Adv. Comput. Sci. Appl, 11,
303-311.

[5]. Chae, J.-w., & Cho, H.-c. (2021). Identifying the mating
posture of cattle using deep learning-based object detection with
networks of various settings. Journal of Electrical Engineering &
Technology, 16(3), 1685-1692.

[6]. Górriz, J. M., Ramírez, J., Ortíz, A., Martínez-Murcia, F. J.,
Segovia, F., Suckling, J. & Ferrández, J. M. (2020). Artificial

intelligence within the interplay between natural and artificial
computation: Advances in data science, trends and applications.
Neurocomputing, 410, 237-270.

[7]. Kasper-Eulaers, M., Hahn, N., Berger, S., Sebulonsen, T.,
Myrland, Ø., & Kummervold, P. E. (2021). Detecting heavy
goods vehicles in rest areas in winter conditions using YOLOv5.
Algorithms, 14(4), 114.

[8]. Khalid, S., Oqaibi, H. M., Aqib, M., & Hafeez, Y. (2023).
Small Pests Detection in Field Crops Using Deep Learning
Object Detection. Sustainability, 15(8), 6815.

[9]. Li, C., Li, L., Jiang, H., Weng, K., Geng, Y., Li, L., ... & Wei,
X. (2022). YOLOv6: A single-stage object detection framework
for industrial applications. arXiv preprint arXiv:2209.02976.

[10]. Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J.,
Liu, X., & Pietikäinen, M. (2020). Deep learning for generic
object detection: A survey. International journal of computer
vision, 128, 261-318.

[11]. Malta, A., Mendes, M., & Farinha, T. (2021).
Augmented reality maintenance assistant using yolov5. Applied
Sciences, 11(11), 4758.

[12]. Nepal, U., & Eslamiat, H. (2022). Comparing
YOLOv3, YOLOv4 and YOLOv5 for autonomous landing spot
detection in faulty UAVs. Sensors, 22(2), 464.

[13]. Olorunshola, O. E., Irhebhude, M. E., & Evwiekpaefe,
A. E. (2023). A Comparative Study of YOLOv5 and YOLOv7
Object Detection Algorithms. Journal of Computing and Social
Informatics, 2(1), 1-12.

[14]. Redmon, J., Divvala, S., Girshick, R., & Farhadi, A.
(2016). You only look once: Unified, real-time object detection.
In Proceedings of the IEEE conference on computer vision and
pattern recognition (pp. 779-788).

[15]. Redmon, J., & Farhadi, A. (2017). YOLO9000: better,
faster, stronger. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 7263-7271).

[16]. Redmon, J., & Farhadi, A. (2018). Yolov3: An
incremental improvement. arXiv preprint arXiv:1804. 02767.

[17]. Terven, J., & Cordova-Esparza, D. (2023). A
Comprehensive Review of YOLO: From YOLOv1 to YOLOv8
and Beyond. arXiv preprint arXiv:2304.00501.

[18]. Wang, C. Y., Bochkovskiy, A., & Liao, H. Y. M.
(2022). YOLOv7: Trainable bag-of-freebies sets new state-of-
the-art for real-time object detectors. arXiv preprint
arXiv:2207.02696.

[19]. Wang, D., Tang, J., Zhu, W., Li, H., Xin, J., & He, D.
(2018). Dairy goat detection based on Faster R-CNN from
surveillance video. Computers and Electronics in Agriculture,
154, 443-449.

[20]. Diwan, T., Anirudh, G., & Tembhurne, J. V. (2023).
Object detection using YOLO: Challenges, architectural
successors, datasets and applications. Multimedia Tools and
Applications, 82(6), 9243-9275.

[21]. Yang, L., Yan, J., Li, H., Cao, X., Ge, B., Qi, Z., & Yan,
X. (2022). Real-time classification of invasive plant seeds based
on improved YOLOv5 with attention Mechanism. Diversity,
14(4), 254.

[22]. Yang, F., Zhang, X., & Liu, B. (2022). Video object
tracking based on YOLOv7 and DeepSORT. arXiv preprint
arXiv:2207.12202.

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 1191

