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Abstract—Due to the advancement of photo editing tech-
niques, it has become easier to create fake photos that look
incredibly realistic and are edited in a way that leaves no visible
signs of manipulation, making them ideal for synthesis. However,
Instagram, WeChat, and TikTok are some of the popular social
media platforms where the images have been lossy compressed
before uploading them. As a result, learning to spot forged
images in their compressed form is crucial. As part of this,
some forensic detection techniques have made great strides in
uncompressed scenarios, but there is still much to learn about
the forensics of lossy compressed images. Therefore, this re-
search proposes a hybrid deep learning framework by dissecting
compressed and manipulated images at the preprocessing and
feature extraction levels. The suggested noise stream progres-
sively prunes the texture information to prevent the model from
fitting the compression noise. Hence, a noise stream is employed
to extract temporal correlation characteristics to address the
potential problem of ignoring temporal consistency in lossy
compressed images. Further, residuals from two streams are fed
to custom ResNet blocks to enhance the clues of manipulation
and pooled to concatenate the enhanced fingerprints. Finally,
the proposed method outperforms state-of-the-art techniques in
identifying manipulation in lossy compressed images.

Index Terms—Digital image forensics, Double compression,
Manipulation detection, lossy compression

I. INTRODUCTION

Nowadays, people have long had access to global news
through various social networks, and more time is spent
online by individuals than in actual social interactions due
to rapidly advancing communication and computing. How-
ever, the data collected in the social network environment
is unreliable. As Artificial intelligence advances, expect to
see more and more examples of manipulated media content
shared across social media platforms, some for entertain-
ment and some for impaired individuals [1], [2]. Generally,
manipulated images that have been compressed are now
commonly used on social media. This is because high-quality
picture transmission speeds suffer without sufficient network
bandwidth. Therefore, when a user uploads an image to a
social media platform, it automatically reduces the image’s
file size. Moreover, users of social media apps like WeChat
and Instagram are forced to repeatedly compress and reupload
images because of the apps’ size limits. Hence, forgers
distribute bogus images using compression, reducing forensic
investigators’ ability to identify them as forgeries [3], [4].
To tackle this issue, forensic analysis of compressed forged
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images is crucial for addressing the “seeing is not believ-
ing” problem. Hence, it is important to consider real-world
instances where a forensic investigator lacks background
knowledge regarding the system’s operating settings.
Towards this goal, many handcrafted features are widely
used for picture modification detection [5]-[7]. However,
these characteristics are able to identify specific types of
manipulation. On the other hand, researchers have explored
using Convolutional Neural Networks (CNNs) to learn al-
teration attributes due to their robust learning capability
and generalizability [8], [9]. Contrary to popular belief,
CNNs are not designed to learn manipulation features (such
as tamper artefacts) but rather image content information.
Hence, some solutions have been reported to address this
issue, such as the Steganalysis Rich Model (SRM) [5] and
constrained convolutional layers [10] that remove image tex-
ture information while keeping manipulation traces. However,
without additional image semantic information like com-
pression artefacts or noise, these methods struggle to detect
manipulation regions accurately in compressed scenarios.
Therefore, bridging the gap for manipulation identification
in the presence of lossy compression is challenging due
to the fact that lossy compression will erase manipulation
clues, deteriorating further detection performance. To address
the issue mentioned earlier, we developed a multi-modality
framework to identify manipulation in lossy compression
scenarios. The key contributions of the article are put briefly.

o We propose a novel multi-modality framework for de-
tecting image manipulation, which is robust against
different kinds of manipulation.

o To improve the performance of highly lossy com-
pressed images, we introduced Discrete Cosine Trans-
form (DCT) residuals in the proposed framework.

o Finally, state-of-the-art performance is achieved on
JPEG and non-JPEG manually manipulated photos using
our two-stream system, as shown by substantial testing
findings.

The remainder of the article is organized as follows. Recent
literature on image manipulation detection is discussed in
Section II. Next, the proposed method using a multi-modality
framework is represented in Section III. In Section IV,
experimental results and ablation studies are reported. Finally,
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concluding remarks are discussed in Section V.

II. RELATED WORK

In this section, we look back at recent related work for
detecting and pinpointing tampering using CNNs. For several
image manipulation operations, general-purpose detection
techniques have been developed [10]-[12]. These methods
have proven they can autonomously learn picture editing
features from data. To identify the numerous image manipu-
lation operations while hiding the image texture information,
[10] proposes a unique restricted convolutional layer-based
CNN, and [13] refines and improves upon this network. In
addition, a densely connected CNN is reported for use in
general-purpose visual forensics [11]. As part of this, high-
pass filtering with the isotropic convolutional layer makes
the artefacts of image processing procedures stand out. Fur-
ther, in [14], a method for detecting picture modification is
provided based on [10] and employs a deep siamese CNN
network. Instead, they focused on determining whether or
not a given set of input patches (two photos) had been
similarly processed. On the other hand, classifying numerous
image processing tasks while considering small-sized images
is the focus of [15], where the Xception architecture is
used. However, the present general-purpose forensic methods
are limited to identifying manipulations in uncompressed
scenarios. Recently, in [16], the authors offer a generalized
manipulation detection method that relies on the multi-scale
residual module CNN and considers most of the manipulation
operations, including a wide range of anti-forensic methods.
On the other hand, most of the above methods are considered
in un-compressed scenarios, and further, their performance
degrades significantly in lossy compression which is the
most realistic scenario. In addition, detailed recent studies
on manipulation detection are also mentioned in Table. 1.

TABLE I: Recent related work on several manipulations
detection techniques

Manipulation parameters

Method  Clue/Feature Blurring Noise Comp i Remarks
MF  GB  AWGN RS JPEG
[13] Constrain CNN v v v v v L3
[12] RGB + SRM v v Lo, L3
[17] Visual + Compression v v v v v Lo, Lo
[15] Magnified layer v v v v v Ly, L3
Multi-scale residual
[16] module v v v v v Ly, L3
[18] Noise residual v v v v v Ly, Lo
Remarks: L;: Computationally expensive, La: Performance to detect multiple manipulations is less,

L3: Difficult to detect manipulation in compressed scenario.

Several restrictions are visible, as reported in the litera-
ture: First, most forensic methods only detect one kind of
manipulation, and second, most detectors were designed for
uncompressed images, thus their performance suffers greatly
in the lossy compressed scenario. Hence, we proposed an
end-to-end network to classify the various manipulation and
operator chains as illustrated in Table II in light of the
aforementioned drawbacks.

III. PROPOSED METHOD

The proposed network includes enhancing manipulation
traces, learning features with CNN, and further manipulation
is predicted using the classification stage.
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TABLE II: Total type of manipulations considered in this
article

Alteration type Notation Parameters
Median filtering MF 3%x3,5x5,7TxT
Gaussian bluring GB 3x3,5x5,7Tx7
Additive White Gaussian Noise =~ AWGN 0 =0.5,1.5,2.0
Resampling (Bilinear) RS 06,08, 1.2, 1.5

A. Overview

An end-to-end framework is proposed to detect manipula-
tions in re-compressed images and the detailed architecture
and its blocks with multi-modalities utilized in pre-processing
steps are illustrated in Fig. 1. The proposed method uses three
distinct modules in sequence: initially, a pre-processing mod-
ule is utilized with SRM filters [5], constrain CNN layer [10],
and DCT residuals are concatenated to improve tampering
traces. Secondly, five Residual blocks are utilized to learn
discriminating features to enhance manipulation clues rather
than image content. Finally, a classification module is used
to achieve image-wise prediction based on the probability of
each class achieved in the last fully connected layer.

{ Spatial Stream
RGB 55

@s
SRM 5x5
@s
@3

N
'

Input Image
Res block #1 @ 32
Res block #2 @ 64
Res block #3 @ 128
Res block #4 @ 256
Res block #5 @ 512
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.

e
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Fig. 1: Archiecture of the proposed framework.

B. Enhancing manipulation traces

From a forensics perspective, the local reliance of pixels
with their neighbours is the most crucial detail extracted by
this pre-processing layer. To refine an incoming image, we
devise a pre-filtering module that uses 5 SRM filters specified
in Fig. 2, constrain CNN layer [10], and RGB residuals.
Specifically, in [10], the k filter weights individually specified
as

wh(0,0)=—1 and Y  wi(z,z)=1 (1)
z1,2270

where, w}.(z1, 2) denotes the weight at position (z1,z2) of
the k th filter and wy (0, 0) indicates the weight at the middle
of the corresponding filter kernel. The process is repeated
for each pixel in the patch by shifting the kernels over the
image patch. As part of manipulation traces extraction, the
input image of size m X n X ¢ passes through pre-processing
step and generates the features fm,., fm., and fm, with a
size of m x n with 5, 3, and 5 feature maps respectively.
Then each feature is concatenated to represent an enhanced
manipulated trace output feature (fm,1) represented as:

2

The final output fm,;, i.e., has a m x n size with 13
feature maps. Further, it is noted that the filter kernels are
made trainable during training to modify their parameters
using gradient descent. The noise residual features from

fmol = |fmr;fmc;fms|
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Fig. 2: Five SRM kernels are utilized in noise stream
the concatenated block are given as input for the feature
extraction stage, as shown in Fig. 1. 8 Relu |8 Rla |8 Y Relu
Hf)weve?r, th.e purpose of the prf)posed approach is tg dgtect > E % > E 2 > E % »C ) >
manipulation in the JPEG domain. Hence, as a preliminary Input Q Q Q Output

step in extracting transform features, we devise DCT residu-
als with a size of 5 x 5, which helps to exact the clues left
by lossy compression. In the JPEG realm, these residuals
and their variation [19] are effective characteristics for JPEG
picture steganalysis. We believe that these residuals can effec-
tively identify clues left by manipulations. Therefore, these
DCT basis patterns are a pre-processing convolutional stage
that outputs twenty-five residual maps from decompressed
JPEG pictures.

iy wiw;  mk(2p+1)  wl(29+1)
B},qﬂ = cos 10 cos 10 3)
where 0 <4, 7 <4,0<p, g <4, w, is defined as follows
1, z=0
w”:{ﬁ, 1<z<4 @

Decompressing a JPEG input image of size m x n yields
I, in spatial domain. After convolving I,,,,, with B(i, j),
we obtain twenty-five residual maps R(i, j) as shown below.

R(i,j) = I B(i,j) ®)

Finally, 25 feature maps (fm,z2) are generated and given to
the second stream with a similar feature extraction stage.

C. Learning feature with CNN

Once the pre-processing stage collects efficient and dis-
criminative features from the images to identify altered from
unaltered images. The five ResNet blocks that comprise
the planned feature extraction module are divided into two
“bottleneck” branches. Every bottleneck consists of a batch
normalisation and ReLu activation step, followed by three
consecutive convolutional layers and an identity skip connec-
tion. Three convolutional layers have kernel sizes of 1 x 1,
3x3, and 1x 1, respectively and stride is 1, excluding the final
layer in second branch of each block, which has a stride of 2
for pooling and decreasing size in the spatial domain specified
in Fig. 3. In keeping with ResNet’s default configuration, we
set the channel depth of the first two convolutional layers
to equal one-fourth of the depth of the final convolutional
layer (output depth). We begin with a depth of 128 for the
first block’s output and increase it by 128 for each successive
block. The 13-channel and 25-channel residuals are fed into
a feature extraction module, where 512 feature maps are
learned with a spatial and transform domain of the original
image concatenated to form 1024 feature maps and fed to the
classification stage.
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Fig. 3: Residual block used in proposed network.

D. Performing manipulation prediction

Finally, to predict various manipulations, three fully con-
nected layers (fc1, fe2, fes) are utilized in the classification
stage. For better prediction, 256 and 128 nodes in f.;
and f.o, respectively and final layer nodes are taken based
on the experiment, such as 2 for single manipulation, 4
for manipulation classification, and 10 for operator chain
classification. The proposed model trained for 50 epochs with
an initial learning rate (Ir) of 0.001, and it is decreased with
a factor =0.5 for every 5000 iterations. Also, for the single
manipulation experiment, we used binary cross-entropy as
a loss function; for the other studies, we used categorical
cross-entropy. All experiments use the Adam optimizer [20]
as their optimisation method to get the most stable and quick
convergence.

IV. EXPERIMENTAL RESULTS & DISCUSSIONS

Several experiments are performed to validate the proposed
approach’s ability to identify manipulations, considering var-
ious alterations in lossy JPEG compression scenarios.

A. Experimental Setup

All the experiments of the proposed network are built in
the Pytorch framework using GPU as the backend. This has
been accomplished using a desktop computer outfitted with
an NVIDIA Quadro P6000 24 GB GPU. The preprocessing
was done in Python using the OpenCV package. All the
experiments were done by utilizing the RAISE [21] dataset
with 8,156 images of various sizes utilized for training and
DRESDEN [22] with 25,137 colour images of various sizes
used for testing. In addition, images in both datasets are in
TIFF format. Finally, the manipulated synthetic dataset is
created with different manipulations as shown in Table II.

B. Performance of the proposed framework

Since filtering modification operators can alter an image’s
aesthetic appearance while preserving its overall structure
and content, they are frequently utilised in the creation of
forged photographs. Hence, the generality of the proposed
framework was accessed by conducting the experiments with
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TABLE III: Detection performance (%) of the proposed method for single manipulation in lossy compressed images with
primary quality factor QF; = 90 and secondary quality factor randomly chosen QF5 € (50,60, 70, 80, 90)

Image Blurring

Noise addition Resampling (Bicubic)

MF@3 MF@5 MF@7 GB@3 GB@5 GB@7 AWGN @05 AWGN @15 AWGN@2 RS @06 RS @0.8 RS @l2 RS @15
MISLNet [13] 97.48 95.75 96.72 96.05 97.16 96.75 99.55 99.36 99.85 96.16 97.58 98.35 98.99
MCNet [17] 96.58 98.32 98.96 95.24 94.00 95.25 97.25 98.56 98.24 95.28 94.95 97.36 97.64
MDRNet [18] 98.24 98.05 98.64 98.58 98.12 98.95 99.99 99.99 99.99 97.14 98.15 98.25 97.96
Proposed 98.95 98.84 98.86 99.05 98.96 98.98 99.99 99.99 99.99 98.96 98.12 98.95 98.10

various filter parameters specified in Table II in three scenar-
ios: single manipulated, multiple manipulated and series of
manipulations in the JPEG compression scenario.

1) Single manipulation detection: Initially, the signifi-
cance of the proposed framework is accessed to identify
whether the image is altered or not. In this experiment,
four different manipulations are considered with different
manipulation parameters and a total of 13 experiments are
conducted. Specifically, 13 databases were created, each
consisting of 50000 image patches, including 25000 altered
and 25000 unaltered patches. To create each patch; initially,
512 x 512 size un-processed patch is taken from RAISE
[21] and compressed with a quality factor (QFy = 90).
Further, it is altered with one of the manipulation types
followed by a randomly chosen secondary quality factor
(QF3 = 50,60, 70, 80,90). Finally, a centrally cropped patch
with a size of 256 x 256 is generated to form an altered
patch. Similarly, an unaltered patch with a size of 256 x 256
is generated to form a second class. Later, the proposed model
is trained with an 80:20 split ratio (i.e. 40000 for training and
10000 for validation) for 50 epochs as specified in Section
1I-D.

Once the model is trained, to test the effectiveness of the
proposed model, we took 10000 patches from the DRES-
DEN dataset [22] with 5000 altered and 5000 unaltered.
Further, the performance is noted in terms of accuracy metric
and present in Table III. Similarly, for all other types of
manipulations, corresponding performance is measured with
the same experiment settings. For comparative analysis, we
considered MISLNet [13], MCNet [17], and MDRNet [18]
with the same settings, and the corresponding mean accuracy
is noted in Table. III. It is to be noted that the proposed
method outperforms the early reported techniques in the lossy
compression scenario.

2) Multiple manipulation detection: In this experiment,
multiple manipulations are considered, where most of the
social networking platforms are utilized such as Gaussian
blur, median filtering, and resampling. Hence, these processes
can leave artefacts or abnormalities that can be noticed and
analysed to determine image integrity using the proposed
method. To conduct this, the proposed framework with 4
neurons in the f.3 layer is assumed and corresponds to 3
altered and one unaltered class. Following the lead of the first
experiment, we extracted 100000 patches from the RAISE
dataset [21] and used them to train our model with the
output layer activated using the softmax activation function.
Later, the proposed model is trained with an 80:20 split ratio
(i.e. 80000 for training and 20000 for validation) for 50
epochs as specified in Section III-D. For testing, we used
5000 patches from the DRESDEN [22] for each class and
tested on a total of 20000 patches to determine how well
the proposed network performed in a mismatch scenario. As
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can be shown in Fig. 4, the suggested network achieves a
greater level of accuracy when it comes to GB (94.60%),
MF (96.48%), original (97.10%), and RS (96.94%) alterations
in lossy compressed images. In addition, the loss curve for
detecting multiple manipulations with proposed framework is
depicted in Fig. 6.

GB

-80

ORG MF

RS

GB MF

ORG RS

Fig. 4: Confusion matrix to identify multiple manipulations
(i.e JPEG-manipulation-JPEG) using the proposed frame-
work.

3) Operator chain classification: Finally, an unavoidable
scenario is considered, when multiple modifications have
been made to the same image, many services try to act
like social networking software by re-compressing the final
product before sharing it. To demonstrate this, a third set
of experiments are conducted to see how a well-proposed
network can spot the image’s altered history after JPEG
lossy compression. Prior to being lossy compressed with
a quality factor of 90, each image patch experienced a
sequence of up to two distinct modifications. The last fully
connected layer comprises ten nodes describing nine different
transformations and one original category. For training, we
used 25,000 original grayscale image patches created the
same way as before from the RAISE dataset [21]. Fol-
lowing this, the image patches are blurred using a variety
of techniques, such as MF, GB, and bicubic interpolation
to resize (RS) specified in Table II. Each manipulation
could have up to two such operations which are denoted by
" 1Stmanipulation — 2"*manipulation” . Further, 250000
patches with 25000 patches of each class are created from
RAISE [21] to train the proposed framework. Later, the
proposed model is trained with an 80:20 split ratio (i.e.
200000 for training and 50000 for validation) for 50 epochs
as specified in the previous experiment. Once the model is
trained, for testing, 50 TIFF photos are chosen randomly from
the DRESDEN dataset [22], and 10 patches are collected with
a size of 512 x 512 to form 5000 unaltered patches for this
analysis. Next, images are manipulated using the same data
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Fig. 5: Confusion matrix to identify operator chain detection
(i.e. JPEG-series of manipulations-JPEG) with the proposed
framework.

preparation processes mentioned in the previous experiment.
For each class, we collected centrally cropped 5000 image
sets with a size of 256 x 256. Finally, the model is tested and a
test accuracy of more than 89.96% was achieved by the model
across all series of manipulations using photos that were not
viewed during training. The performance was checked across
various manipulations for a more in-depth examination. In
addition, the performance is measured and the corresponding
confusion matrix is depicted in Fig 5 and noted that the multi-
modality framework achieves better performance, specifically
MF followed by RS. In addition, the loss curve for detecting
operator chain with proposed framework is shown in Fig. 6.

Loss Vs Epoch

—e— Multiple manipulation train loss
—e— Multiple manipulation valid loss
1.04 —+— QOperator chain train loss
h —+— Operator chain valid loss
0.8 1
@
506
0.4
0.2 A
0 10 20 30 40 50
Epoch

Fig. 6: Loss curve of multiple manipulations (5) and operator
chain classification (10) followed by re-compression with
QF, € (50,60, 70, 80,90).

C. Ablation study

Since the suggested architecture comprises several blocks,
including Residual blocks with multi-modality input streams,
ablation research is done to determine how each block
affects the architecture’s performance. Table IV shows several
experimental findings for the two datasets such as RAISE
[21] & DRESDEN [22]. As part of this, three streams are
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considered such as Constrain layer, SRM, and DCT residual
stream and conducted experiments to find the effectiveness of
each stream. It is noted from Table IV that the suggested ar-
chitecture greatly raised the mean accuracy of all experiments
which included the DCT residual stream as compared to other
combinations. Hence, it is showing that the DCT module has
improved proposed method’s performance as demonstrated
by the accuracy.

TABLE IV: Ablation study for effectively comparing the
proposed network with different modules on two datasets.

RAISE [21] DRESDEN [22]

SRM 7 v 7 7 7 7
Constrain v v v v v v
DCT v v v v v v
Mean 9465 9554 9656 97.85 | 9548 9685 9756 98.95
accuarcy (%)

D. Comparative analysis of the proposed framework with
state-of-the-art techniques

As alast test, we used identical experimental circumstances
as previously described to determine the mean accuracy
of multiple manipulations & operator chain identification
in lossy compressed images with state-of-the-art. Fig. 7
reports the comparative analysis of the proposed method with
early reported techniques like MISLnet [13], MCNet [17],
and MDRNet [18]. In comparison to MISLnet (88.25%),
MCNet (88.68%), and MDRNet (86.98%), the suggested
method achieves a mean accuracy of 89.48% for heavy lossy
compression (Q F» = 50). Similar to the previous experiment
with the same settings operator chain mean accuracy is
also measured and depicted in Fig. 8. Therefore, the better
accuracy will confirm that the proposed network is superior
to several existing approaches, especially with regard to lossy
compression scenarios.

mMISLNet [13]  WMCNet [17]  ®MDRNet [18] = Proposed

94
92
90
88
86
84
82
80
50 60 70 80 90 100

Secondary quality factor (QF2)

Multiple Manipulation Detection Accuracy (%)

Fig. 7: Compartive analysis to detect multiple manipulations
with early reported techniques for different secondary quality
factors QF» € (50, 60,70, 80,90, 100).

V. CONCLUSION

This work introduces a novel end-to-end framework that
retains numerous tampering traces from noise residuals and
DCT residuals in the JPEG domain. To identify image alter-
ation methods, the proposed model combines data indicative
of tampering such as DCT residuals and noise features
learned by multi-modality with features indicative of artefacts
in the image collected by CNN. The noise stream can be
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Fig. 8: Compartive analysis to detect operator chains with
early reported techniques for different secondary quality
factors QF» € (50,60, 70,80,90,100).

used to restore the integrity of delicate boundary artefacts in
fused feature maps that were weakened by post-processing
techniques. Extensive experiments show that the proposed
network is more effective than early-reported techniques. In
addition, our approach is also robust to identifying photos
that have been altered through highly compressed or post-
processing. In future, it would be ideal to have a global
feature extractor that is more effective than pre-processing
SRM and contain CNN layers. It will also be interesting to
look at new ways of using uncertainty estimation to spot
photographs modified outside the norm.
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