
  

  

Abstract— Classifying and mapping water bodies is more 

significant and essential to human life. Identifying water 

availability, degradation and disappearance with respect to 

various seasonal variations and climate variations using 

change detection techniques and water indices are current 

research challenges due to temporal variability of spectral, 

temporal and spatial characteristics of different reflectance 

bands of Landsat dataset.  Especially water bodies such as sea, 

ocean, lakes, river and glaciers have different spectral and 

spatial reflectance values. Further, presence of the thematic 

classes in the imagery leads to misinterpretation error and it is 

highly complex to obtain the ground-truth data for the change 

in the multispectral images on the same topographical zone. In 

order to manage these challenges, an effective deep learning 

architecture is designed. In this work, a Dense Convolutional 

Neural Network for change detection and novel water indices 

is presented. Proposed model is capable of classifying the 

water bodies in the multispectral images in addition to 

detecting and quantifying the site-specific changes due to 

climate and seasons on the basis of spectral and spatial 

reflectance values. Initially endmembers considered as 

multivariate components are extracted using sparse principal 

component analysis (PCA). PCA is capable of handling of non-

changing pixels and continuous narrow bands in the 

multispectral satellite data for various water bodies. End 

member selection on multivariate components is carried out 

using Particle swarm optimization technique. This is effective 

in reducing the size of multispectral data by producing the 

principal components and to overcome the dimensionality 

problem. Extracted principal endmember is applied to dense 

convolution neural network classifier. With the spectral values 

of the endmember thematic classes are generated to 

discriminate the water bodies on basis of its types. Finally, new 

water index is allotted to the water bodies on basis of the 

climate and season variations along the degradation rate and 

disappearance rate.  The experimental results of the proposed 

model are evaluated on real-time multispectral image data sets 

acquired from Landsat 8 OLI dataset. Performance of the 

proposed model is compared with conventional approaches 

with respect to precision, recall and f measure on cross fold 

validation. From the results, it is confirmed that proposed 

architecture exhibits higher performance in classification 

accuracy with 99.43% in delineating the water bodies. 
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I. INTRODUCTION 

Water bodies’ delineation is essential for the human living 

and ecosystem towards sustainable life in the universe. 

However intense exploitation of the water bodies at regular 

intervals is found to be very imperative as it helps to access 

the extent and rate of degradation and disappearance due to 

climatic variations [1]. Delineation and classification of 

water bodies enhances the chances of water conservation. 

Manual exploitation and delineation are highly challenging 

due to diversity of the waterbodies. Complexity of the water 

bodies’ detection and classification on wide range of the 

land regions can be minimized on utilizing the remote 

sensing technologies [2]. 

Delineation of the Water bodies using satellite images 

through remote sensing technology has achieved significant 

growth in the engineering research. Especially machine 

learning architectures like support vector machine [3] 

Random Forest and decision tree algorithms are employed 

to delineate the water bodies [4]. Despite of numerous 

advantages, machine learning architectures exhibit various 

challenges with respect to the illumination defects, 

environment changes and atmospheric aspects such as low 

spatial and temporal resolutions and large spatial and 

temporal variability and spectral signatures similarity on 

identifying the degradation and disappearance of the water 

resources among water regions such as sea, ocean, lakes, 

rivers and glaciers.  

These limitations lead to misinterpretation error. It is a 

time-consuming task to identify the changes in the 

multispectral images on the same topographical zone. In 

order to mitigate these non-trivial challenges, deep learning 

architecture has emerged to provide advanced solutions to 

change detection in the water bodies. The architecture helps 

to detect and quantify the site-specific changes due to 

climate and season on basis of spectral and spatial 

reflectance values. Landsat OLI captures the image in nine 

spectral bands the spectral contextual information is used 

for effective discrimination [5]. 

In this Paper, Dense Convolution Neural Network (DCNN) 

is employed for change detection and novel water indices 

marking. Initially multispectral satellite images are 

preprocessed using noise removal technique against various 

noises and bad line replacement techniques for image 

replacement. Proposed model is highlighted with  

 

• Existing Convolution neural network (CNN) algorithm 

• Proposed is dense convolution neural network classifier 

to identify the spectral values of the end member to 

generate thematic classes to discriminate the water bodies 
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on basis of its types by utilizing the various layers such as 

convolution layer, pooling layer, activation layer, 

embedding layer and SoftMax layer. 

• Finally, new water index is generated using relief 

algorithm and it is used describe the water bodies on basis 

of the climate and season variations along with the 

degradation rate and disappearance rate during different 

seasons and climates.  

 

 

 

 
Figure 1: Multispectral Landsat OLI 8 Image from USGS earth explorer 

(1024 x 1024) 

 

200 satellite images downloaded from USGS earth explore 

in various spatial domains. 160 images used for training and 

40 images used for testing. Figure 1 represents the input 

Landsat OLI 8 image (1024 x 1024) download from USGS 

earth explorer portal. 

II. PROPOSED MODEL 

In this section, a new deep learning architecture named 

Dense Convolution Neural Network is constructed towards 

delineation of water bodies by processing multispectral 

images for change detection due to seasonal and climatic 

variations on the topographical region. The architecture is 

modelled to detect a particular water body with spectral 

signatures along with its changes on spatial temporal 

aspects.  

A. Endmember Extraction – Sparse Principal 

Component Analysis with image preprocessing 

            In this work, endmember extraction is used for 

dimension reduction and obtain the minimum noise 

function. Sparse principal component analysis [7] is used 

for data processing and dimension reduction. So, both the 

techniques are used for preprocessing the data. 

multispectral images are represented as three dimensional 

images with combination of spectral and spatial bands as 

cube. Spectral bands contain the noise and the 

redundancies. This can be removed using denoising 

techniques. However, in spectral information, correlation 

between the bands of the different wavelength is complex. 

In order to eliminate these complexities, multiband sparse 

representation is done. Figure 2 represents the image 

preprocessing using denoising technique with slicing of 

multispectral image 

 

.    

 
Figure 2: Multispectral Image slicing towards and spectral and spatial 

dimensions 

 

Denoising technique using 3D wavelet based sliding 

window is employed for de-correlating the pixel 

dependencies with various coefficients vectorized in 2D 

matrix in the multispectral image slices. Rank constraints 

are employed in the spectral and spatial slices for 

approximation of the image to produce the denoised 

multispectral images without redundancy as well as bad 

lines in the image [8].  

             Figure 1 represents the redundancy and noise 

elimination in the sliced patches of the image. Rank 

constraints are applied to slices of the image for noise 

reduction as follows:  

 

Mi= i)            (1) 

 

where R is the Rank Constraint, C is the coefficient of the 

image, T is the spatial dimension and S is the spectral 

dimension. 

The first order spectral derivates of the image are reduced 

using the rank constraints to generate the high contrast 

multispectral images.  Further linear combination on spatial 

and spectral parameters is adopted to filter the noise with 

averaging mechanism. Averaging of the parameters corrects 

the spectral and spatial bands accumulated with error.  

 

Endmember extraction is carried out using sparse 

principal component analysis. Endmember extraction 

determines the multivariate components in the particular 

pixel on emphasizing the spectral and spatial signatures. 

Multivariate component of the pixel constructs the subspace 

with maximum volume to accommodate the pixels with 

similar spectral structure to represent the endmembers in 

the specified region.  

 

     Assume the multispectral Image as composition of P 

Pixels and L spectral bands 

 

    Assume endmember to be obtained as Ed  

 

The Spectral signature of the N pixels is represented as 

Vector V 

                              V = {PL1, PL2....PLn...}        (2) 

 

Covariance of the Pixel on spectral signatures is 

computed as  

                               Cv = SL (ri –ri+1)             (3) 

 

Correlation of the pixel on the spectral signatures is 

computed as 

                                  Cc = SL (ri +ri+1)           (4) 

 

where m is the number of endmembers 

where SL represent the spatial location of a pixel within an 

image. It's a variable that indicates where the pixel is 

situated in the two-dimensional space of the image, "i” 

represents the index or counter for different spectral bands 

or channels in a multispectral image. The subscript "i" in 

"ri" refers to a specific band index within that vector. 

Subspace of the endmember of the neighbor spatial location 

is computed as  
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                      SeSL =              (5) 

 

where e0 = [  

 

eSL= [e1,e2,......em] represents the endmember of particular 

spatial location . 

 

The resulting subspace of the end-member is Abundance 

Ai. 

Ai = [SeSL]I denote the abundance of the ith pixels 

 

Subspace composed of the suitable endmember 

representing the spectral reflectance properties of its zones. 

Finally, abundance map is generated to the subspace 

containing the spectral value of a pixel on the neighbor 

zones indicating as the relative abundance of an 

endmembers.  Further Spectra fidelity is also computed to 

evaluate the accuracy of the abundance map generated. In 

Figure 3(a) represents the input image figure 3b represents 

the endmembers extracted principal components image.  

 

 
(a) (b) 

Figure 3: Endmember extraction using Principal component analysis (a) 

Input image  (b) endmembers extracted image 

A. Endmember Selection – Particle Swarm Optimization   

Particle Swarm optimization is a Metaheuristic 

optimization technique projected to obtain the optimal 

endmember spectral signature in a particular location which 

is composed of only particular type of water body segments 

or spectral features. It is inspired by the social forging 

behaviors of the bird. Particle represents the endmembers 

and velocity represents the size of the endmember. In order 

to reduce the search space, optimization employed to 

generate the new population by scaling the values of the 

endmembers.  

Assume V(t) = Velocity which represents size of end                 

                           member 

Assume X(t) = Particle which represent endmembers  

Xbest is the best endmember among endmembers   

Xgbest is the best size of the endmember among the available 

size of the endmembers.  

 

Fitness function of endmember is  

 
V(t+1)=w*V(t)+c1*rand()*(Xbest-X(t))+c2*rand()*(xgbest-x(t))   (6) 

 

Selected endmembers for spatial region is represented as 

 {e1, e2, e3...en} 

              In this e1, e2 represent the best endmember of 

selected spatial region containing spectral signatures.  

B. Water Body delineation – Dense Convolution Neural 

Network for Change Detection  

Dense Convolution Neural Network is employed to 

delineate the water bodies for change detection and 

mapping of regions with respect to season and climate 

variation. It delineates the water bodies on the processing of 

optimal feature containing endmembers. The processing of 

the endmembers in the deep learning architecture undergoes 

various computations in the layers of the network. Change 

detection network aims to map the spatial correlated 

endmembers and identify spectral changes of the 

endmembers on the basis of temporal changes.  

1) Convolution Layer  

           The convolution layer of the model contains multiple 

kernels to convolve with optimal endmembers to derive the 

feature map which is considered as activation map of the 

spatial correlated endmembers. Convolution is 

mathematical operation which illustrated as feature 

multiplication of the spectral signature and multiple filters. 

Spectral matrix of multispectral image 5*5 is multiplied 

with kernel size 3*3. Figure 4 represents Convolution of the 

spectral endmember is illustrated as 

 
 

 
 

Figure 4 : Convoluted of the spectral endmember matrix with Kernel 
matrix 

C. Endmembers Feature Map 

The convolution layer yields the spectral endmembers of 

the mapped correlated spatial endmembers with respect to 

the convolution operations. Endmembers convergence into 

spectral map representing temporal changes of spectral 

values with respect to seasonal and climatic variations. 

Convergence map is established using no. of epochs. It 

enhances the endmembers on normalization of the 

activation function represented as ReLu to yield the linear 

feature map. Endmembers Distance is calculated using 

cosine distance.  

Cosine distance of the endmembers in the convergence map 

is represented as  

 

CDe = Csp(mtft)-Csp(mtft)/ (Csp(mtft)+ Csp(mtft))       (7) 

where Csp is the constraint support problem used to find 

endmembers in the multispectral data, ft is the filter and mt 

is endmembers 

 

1) Pooling layer  

Pooling layer of the network minimize the spatial 

dimension of the endmembers as it is termed as spatial 

pooling of the multispectral images. In other words, pooling 

layer is considered as down sampling of spatial 
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endmembers on reducing the spatial endmembers 

dimension on retaining only selected weighted 

endmembers. The spectral reflectance value is highest in 

selected weighted endmembers. Due to the spectral 

signatures, the Max Pooling layer joins the shortened 

segments of the spectral endmembers. The largest number 

of endmembers are mapped to each spatial temporal feature 

using max pooling. Meanwhile it increases the model 

generalization. Figure 5 represents the Endmember pooling 

of the convoluted matrix is illustrated as  

 
Figure 5: Endmember pooling of the convoluted matrix 

 

2) Fully Connected Layer  

Fully connected layer of the DCNN is termed as dense 

layer as it is capable of organizing multiple constraints to 

process the feature map. Feature map is an integration of 

the spatial and spectral endmembers of the topographical 

regions. Discriminative feature map is an integration of the 

temporal features along spatial and spectral information. 

Figure 6 represents Fully connected layer employs the 

activation function to process feature normalization to 

eliminate the non-linearity and over fitting issues in the 

feature bands. Fully connected representation of the feature 

bands is represented below  

 

 
Figure 6: Fully connected model 

 

SoftMax is implemented in the dense layer to produce the 

classes by deducing the feature vector into water region 

class vector. It is to validate the model reliability. Further 

loss function is integrated in fully connected layer to reduce 

the spatial variance on the classes of the endmembers. The 

testing endmembers' closest approximation, which may 

come from several classes, shows how the minimal residual 

can come from many different classes. The results based on 

the voting rule are integrated to get the final categorization 

result. 

The loss function of the Multi parameters provides the 

SoftMax layer, which adheres to the delta rule.  The spatial 

features' multiple linear weights are computed. 

Additionally, iterations can be used to determine the weight 

of a feature. 

∆Wi =C(t-net) xi             (8) 

 

  where ‘C’ is the learning rate ‘xi’ is input weight     

               On the objective of minimizing the SSE (sum of 

squared error) and solving loss of the classifier, Delta rule is 

updated. In this work, spectral reflectance values of the 

endmembers of water bodies are used to develop new 

spectral indices (NSIs). 

        Initially it analyses the properties of each endmember 

with respect to the water regions and maps the value to it. 

Algorithm towards classification of the endmembers 

provided.  Multibolic tangent function is given by  

 

F(a) =                (9) 

 

             Finally, proposed delineation model based on the 

convolution neural network has been generated to classify 

the water regions into the 5 types mentioned in Table2 on 

updating the spectral indices of the proposed model.  

III. EXPRIMENTAL RESULTS 

In this part, performance analysis of the implementation 

outcomes is estimated and evaluated on the dataset obtained 

from Landsat 8 OLI sensor on the various climatic 

conditions. Optimal parameters for the current architecture 

are fixed for the water body delineation on basis of spectral 

reflectance values. The model is implemented in python. 

Landsat dataset is divided into train, test and validate the 

model. Especially 5-fold cross validation is carried out to 

increase the accuracy of the proposed model. Dense 

Convolution Neural Network training parameters are 

illustrated in the Table 1 

 

Parameter Value 

Activation Function ReLu & Tanh 

Learning rate 10-6 

Batch size 14 

Max epoch  500  
 

Table 1: Dense Convolution Neural Network training parameters 

 

The spectral values of the endmembers removed are 

measured in the multispectral pictures used for processing. 

To assess the effectiveness and accuracy of the existing 

model, spectral fidelity is successfully estimated. Figure 7 

shows how the proposed model compares to the standard 

model in terms of precision. 
 

 
Figure 7: Performance Evaluation of the proposed model on precision 

 

The type of water bodies with regard to the correlation of 

the spectral signatures is also computed during the 

processing stage. 

 
Figure 8 : Performance Evaluation of Proposed architecture against 

Conventional model on Recall 
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Figure 8 shows how well the suggested architecture 

performs in terms of recall on the classes when it comes to 

classifying multi-spectral images. 

 
Figure 9 : Performance Evaluation of Proposed architecture against 

Conventional model on F measure 

 

The suggested model's high accuracy values in the multi-

objective activation functions of the classifiers' 

categorization of multi-spectral pictures are an intriguing 

finding. It organizes the water attributes that contain 

reflectance value's discrete spectral values and spatial 

values. Any form of dataset including multi-spectral images 

can be used with this paradigm. The performance results of 

the f measure on outcomes for classes with endmembers are 

shown in Figure 9 in detail. The proposed classifier's 

delineation accuracy is compared to that of the traditional 

classifier as shown in Table 2. 

 

Techniques  Classes  Precision Recall F 

measure  

Proposed 

Technique  –

Dense 

Convolution 

Neural 

Network  

Sea 98.25 96.15 99.12 

Ocean 97.54 97.15 98.25 

River 98.45 95.15 97.25 

Lake 98.21 97.16 96.14 

Glacier 98.14 92.18 97.21 

Existing 

Technique- 

Convolution 

Neural 

Network 

Sea 91.18 90.28 92.56 

Ocean  91.14 90.01 91.23 

River 92.26 90.56 90.89 

Lake 93.18 90.25 91.45 

Glacier 94.12 90.29 90.67 

 
Table 2:  Performance computation of proposed architecture on Water 

bodies Delineation 

 

  
 

 
Figure 10: Change detection of water bodies in Erode district study area 

 

Further these outputs explain that the water spectral index is 

able to delineate water bodies and categorize them with 

better reliability on various experimental and environmental 

conditions. 

IV. CONCLUSION 

In this work, a dense convolution neural network for 

water bodies’ delineation employing the multispectral 

images is designed and implemented. Endmembers of the 

image is obtained using sparse principal component 

analysis optimal endmembers of the water bodies based on 

temporal changes of the images is selected using particle 

swarm optimization technique. Proposed classifier classifies 

the water bodies effectively and accurately with reference to 

the new spectral index generated. Proposed model is 

capable of identifying the lake, river, ocean, sea and glacier. 

In order to determine the accuracy of the implementation 

analysis, it is checked and verified using the Landsat 8 OLI 

dataset. 
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