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Abstract— This paper concerns the development and im-
provement of the underwater navigation system for Autonomous
Underwater Vehicles (AUVs) when faced with velocity-aiding
sensor failures. The study addresses this challenge of sensor
fusion by applying the Error-State Kalman Filter (ESKF), a
form of indirect state filtering. Specifically, the ESKF targets
the limitations of velocity measurements encountered during
near-bottom operations. The proposed method was applied
to the Xplorer-Mini AUV and evaluated using the Gazebo
physics engine simulator in ROS 2. To assess its performance
in handling the loss of velocity signals, a series of simulation-
based experiments were conducted and compared against the
traditional Inertial Navigation System (INS) and Extended
Kalman Filter (EKF) algorithms. The results of the experiments
demonstrate that the ESKF outperforms traditional INS and
EKF algorithms, offering valuable insights into state estimation
techniques for developing autonomous underwater vehicles in
challenging environments.

I. INTRODUCTION

Advancements in sensor technologies for autonomous un-
derwater vehicles (AUVs) have propelled the field forward,
yet accurate underwater navigation remains a significant
obstacle to AUV autonomy. Near-bottom navigation is es-
pecially challenging, impeding further progress [1]. Limited
sensor data from velocity sensors during near-sea floor opera-
tions may require advanced navigation techniques to mitigate
data loss.

According to [2], underwater navigation techniques based
on the Kalman filter can be categorized into direct state
filtering and indirect state filtering. Direct filtering involves
obtaining the state vector directly, while indirect filtering
involves acquiring the states indirectly. The choice between
these methods depends on factors such as computational
complexity, accuracy requirements, and underwater environ-
ment characteristics.

Indirect state inertial navigation systems have been pro-
posed to solve underwater navigation in situations with
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limited velocity measurements, as highlighted by Hegrenaes
et al. [3]. By compensating for the constraints of velocity
sensors, these systems enhance navigation accuracy during
near-bottom operations. The improved near-bottom naviga-
tion capability enables more precise data collection, thereby
facilitating further advancements in autonomous AUVs.

This paper contributes by developing and validating the
Error State Kalman Filter (ESKF), which is an indirect
state filtering approach for underwater navigation. The ESKF
algorithm is specifically designed to better handle lossy
velocity signals encountered during near-bottom operations.
Through comprehensive testing, the study demonstrates the
effectiveness of this approach in compensating for imper-
fect velocity measurements and improving navigation accu-
racy. This contribution expands the understanding of state
estimation techniques and provides valuable insights for
developing autonomous underwater vehicles in challenging
environments.

The paper is organized into the following sections. Sec-
tion II provides a thorough overview of underwater vehicle
modeling and underwater navigation. The experimental setup
and simulation details are presented in Section III. Section IV
presents the results and includes a comprehensive discussion.
Finally, Section V offers the conclusion and summarizes the
study’s key findings.

II. BACKGROUNDS

A. Underwater Vehicle Kinematics

The focus of this research centers on the Xplorer-Mini
AUV model, which incorporates crucial sensors, namely the
Inertial Measurement Unit (IMU), Attitude and Heading Ref-
erence Systems (AHRS), and Doppler Velocity Log (DVL).
Refer to Fig. 1 for visual representation of our AUV in ROS.

Fig. 1. Xplorer-Mini AUV in Gazebo simulator

1) Frames and Coordinates: When analyzing the motion
of an AUV, it is essential to define reference frames and coor-
dinates to facilitate analysis. These reference frames provide
a spatial context for understanding the AUV’s movement
and its relation to the surrounding environment. Typically,
three frames are commonly used: the body frame, the Earth-
fixed frame, and the navigation frame. The body frame {b}
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is attached to the AUV itself, with its origin at the vehicle’s
center of mass. The Earth-fixed frame {e} is fixed relative to
the Earth’s surface, allowing for absolute positioning. Lastly,
the navigation frame {n} is aligned with the Earth-fixed
frame but can be translated and rotated to track the AUV’s
position and orientation. In this paper, the frame used for the
development is the navigation frame.

2) Vehicle States: The AUV state vector consists of its
position, linear velocity, quaternion, accelerometer bias, gy-
roscope bias, and gravity vector; therefore, it can be written
as

x =
[
p⊤ v⊤ q⊤ a⊤

b ω⊤
b g⊤]⊤ (1)

where p denotes the position, v represents the linear velocity,
q is the quaternion, ab stands for the accelerometer bias,
ωb denotes the gyroscope bias, and g represents the gravity
vector. All state variables are expressed in the navigation
frame.

3) Nominal state kinematics: The nominal state kine-
matics represents the vehicle model without any noise or
perturbation terms [4]. The true state vector, denoted as xt,
can be written as the composition of the nominal state vector,
represented as x, and the error-state vector, denoted as δx,
i.e.,

xt = x⊕ δx (2)

where ⊕ denotes the composition operator. Furthermore, the
state variable with the subscript t denotes its true values,
the state variable without the subscript t denotes its nominal
values, and the state variable with δ in the front denotes its
error.

The vehicle has the nominal-kinematic equations in dis-
crete time as follows:

pk = pk−1 + vk−1∆tk−1

+
1

2
(Rk−1(am,k−1 − ab,k−1) + gk−1)∆t2k−1

(3)

vk = vk−1

+ (Rk−1(am,k−1 − ab,k−1) + gk−1)∆tk−1

(4)

qk = qk−1 ⊗ q
{
(ωm,k−1 − ωb,k−1)∆tk−1

}
(5)

ab,k = ab,k−1 (6)
ωb,k = ωb,k−1 (7)
gk = gk−1 (8)

The subscripts k and k−1 indicate the indices of the current
and previous samples, respectively. Moreover, ∆tk−1 is the
time difference between two sample times, i.e.,

∆tk−1 = tk − tk−1. (9)

The matrix R is the rotation matrix transforming a vector
from the body frame to the navigation frame. The symbol
⊗ denotes the quaternion product, and q

{
ϕ
}

denotes the
quaternion of the rotation vector ϕ.

The measured linear acceleration from the accelerometer
is represented by am, and the measured angular velocity
from the gyroscope is denoted by ωm. Any variable with
the subscript m denotes its measured quantity.

4) Error-state kinematics: The error-state kinematics [4]
is determined by

δpk = δpk−1 + δvk−1∆tk−1 (10)
δvk = δvk−1 + (−Rk−1 [am,k−1 − ab,k−1]×δθk−1

−Rk−1δab,k−1 + δgk−1)∆tk−1 + vi,k−1

(11)

δθk =R⊤{(ωm,k−1 − ωb,k−1)∆tk−1

}
δθk−1

− δωb,k−1∆tk−1 + θi,k−1

(12)

δab,k = δab,k−1 + ai,k−1 (13)
δωb,k = δωb,k−1 + ωi,k−1 (14)
δgk = δgk−1 (15)

where [ · ]× is the skew operator producing the cross-
product skew-symmetric matrix. The function R

{
·
}

maps
the rotation vector ϕ to the rotation matrix R

{
ϕ
}

.
The above equations describe the evolution of the error-

state components, namely position error δp, linear velocity
error δv, orientation error δθ, accelerometer bias error δab,
gyroscope bias error δωb, and gravity vector error δg.

In addition to these equations, random impulses vi, θi,
ai, and ωi are introduced, which represent random effects
applied to velocity, orientation, and bias estimates. These
impulses are based on the integration of zero-mean white
Gaussian processes.

To write the error-state kinematic equations in compact
form, the error state vector δx, input vector um, and impulse
vector i are defined as

δx =
[
δp⊤ δv⊤ δθ⊤ δa⊤

b δω⊤
b δg⊤]⊤ (16)

um =
[
a⊤
m ω⊤

m

]⊤ (17)

i =
[
v⊤
i θ⊤

i a⊤
i ω⊤

i

]⊤
. (18)

The error-sate kinematic equation is then compactly written
as

δxk = Fx,k−1 δxk−1 + Fi,k−1 ik−1 (19)

where Fx,k = Fx,k (xk,um,k) is given by

Fx,k =

[
F11,k F12,k

F21,k F22,k

]

F11,k =

 I3 I3∆tk 0
0 I3 −Rk [am,k − ab,k]× ∆tk
0 0 R⊤

k {(ωm,k − ωb,k)∆tk}


F12,k =

 0 0 0
−Rk∆tk 0 I3∆tk

0 −I3∆tk 0


F21,k = 09×9

F22,k = I9

(20)
and Fi,k is the Jacobian matrix of the state function with
respect to the error state and perturbation vectors given by

Fi,k =


0 0 0 0
I3 0 0 0
0 I3 0 0
0 0 I3 0
0 0 0 I3
0 0 0 0

 . (21)

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 893



B. Sensors

1) IMU: An IMU, which consists of accelerometers,
gyroscopes, and sometimes magnetometers [5], is a sensor
for measuring motion-related parameters. The output of an
IMU is typically the raw data which are linear acceleration
am, angular velocity ωm, and magnetic field H .

2) AHRS: An AHRS is a sensor-based system used to
precisely determine an object’s orientation (given by the
measured quaternion qm) and heading. These systems in-
tegrate data from multiple sensors, including accelerometers,
gyroscopes, and magnetometers, to calculate and provide
attitude parameters. Measurements can be obtained through
the navigation frame.

3) DVL: DVL is an acoustic sensor that measures relative
velocity to the sea floor. It emits acoustic pings, analyzes
returned signals to determine echo intensity, and detects
the sea floor. It provides velocity measurements in different
modes: Bottom Track Mode for seabed speed, Water Track
Mode for water current speed, and Water Profile Mode for
water column velocity. By tracking the bottom, it calculates
its own velocity relative to the seabed and estimates absolute
water velocity, aided by a heading sensor [6].

C. Indirect State Filtering

Indirect state filtering, used in state estimation filters like
the Kalman filter, estimates the error state directly instead of
the full system state. In this approach, the Kalman filter is
formulated as an error state filter, estimating deviations from
the true system state. These errors are commonly referred to
as the error state or error vector. The estimated error state
is then used to correct and update the predicted state. This
approach offers benefits such as numerical stability, reduced
computational complexity, and the ability to handle nonlinear
system dynamics. To obtain the estimated full state of the
system, the estimated error state is typically combined with
the predicted state.

The indirect state filtering technique can be classified into
two distinct types: feedforward and feedback systems [2].
In the feedforward approach, error corrections are integrated
into the state of the Inertial Navigation System (INS). Con-
versely, the feedback approach utilizes error estimates to
directly update the INS, thereby mitigating the propagation
and accumulation of INS errors. This feedback-based indirect
state filtering approach is commonly referred to as the ESKF.

The ESKF algorithm is a variation of the Extended Kalman
Filter (EKF) that estimates the state indirectly [7]. It involves
three important aspects: the true state, the nominal state, and
the error state values [4]. The true state is a combination
of the nominal state, which represents a large signal and is
integrable in a nonlinear manner, and the error state, which
is small and linearly integrable, as shown in (2).

Using strap-down navigation [8], high-frequency IMU data
can be constructed to INS. The ESKF incorporates INS data
into the nominal state, ignoring noise and imperfections in
the model that lead to error accumulation. These errors are
captured in the error state and estimated using the ESKF,
accounting for noise and disturbances. It represents small-
signal magnitudes and follows a time-variant linear dynamic
system. The dynamic, control, and measurement matrices for
this system are computed based on the values of the nominal

state. The ESKF predicts the error state using a Gaus-
sian estimate while integrating the nominal state but lacks
additional measurements for correction. Correction occurs
when supplementary information, such as Global Navigation
Satellite System (GNSS), velocity input, or heading input
becomes available, allowing for error observation. This cor-
rection, occurring at a lower rate than the integration phase,
yields a posterior Gaussian estimate of the error state. After
correction, the error state’s mean is injected into the nominal
state and reset to zero, while the covariance matrix is updated
accordingly. This iterative process continues indefinitely in
this manner.

The ESKF consists of 4 steps: prediction, update, injection,
and reset. The prediction and update steps in the ESKF
closely resemble those of a conventional Kalman filter.
However, the ESKF differs from the standard Kalman filter
approach in the injection and reset steps.

First, let the initial error-state estimate be zero, i.e., δ̂x0 =
0. Then, the ESKF is described as follows: for k = 1, 2, 3, . . .

1) Prediction: The predicted equations of ESKF can be
represented by

δ̂x
−
k = Fx,k−1 δ̂xk−1

P−
k = Fx,k−1Pk−1F

⊤
x,k−1 + Fi,k−1Qi,k−1F

⊤
i,k−1

(22)

where δ̂x
−
k and P−

k represent the priori error-state estimate
and state covariance matrix, respectively. Similarly, δ̂xk−1

and Pk−1 represent the posteriori error-state estimate and
covariance matrix in the previous step, respectively. Since
the posteriori error-state δ̂xk−1 in the previous step is zero,
the priori error-state estimate δ̂x

−
k is always zero.

Finally, Qi,k is the covariance of the perturbation matrix
represented by

Qi,k = diag{Vi,k,Θi,k,Ai,k,Ωi,k} (23)

where Vi,k, Θi,k, Ai,k, and Ωi,k are the integration of the
variances of components of i, which are obtained from sensor
datasheets.

2) Update: Note that the measured output y = ym from
one of the sensors can be written as

yk = ym,k = h(xt,k) + nk (24)

where h is an appropriate measurement function of the true
state, and nk is a zero-mean white Gaussian noise with
covariance Rk.

Consequently, the update equations are given as follows:

Kk = P−
k H⊤

k

(
HkP

−
k H⊤

k +Rk

)−1
(25)

x̂t
−
,k = xk ⊕ δ̂x

−
k (26)

δ̂xk = Kk

(
yk − h(x̂t

−
,k)

)
(27)

x̂t,k = xk ⊕ δ̂xk (28)

Pk = (I −KkHk)P
−
k (29)

where Kk is the Kalman gain. Moreover, δ̂xk and Pk repre-
sent the posteriori estimated error state and state covariance
matrix at the current step, respectively.
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The Jacobian matrix Hk represents the sensitivity of the
measurement function h to the error state δx and should be
evaluated at the posteriori true-state estimate x̂t,k = xk ⊕
δ̂xk. However, Hk must be calculated first before finding
Kk and then δ̂xk. Since the error-state mean is zero, the
nominal state can be used as the evaluating point, x̂t,k ≈ xk

for Hk. This simplification leads to the expression:

Hk = Hδx,k =
∂h

∂δx

∣∣∣∣
xt=xk

=
∂h

∂xt

∣∣∣∣
xt=xk

∂xt

∂δx

∣∣∣∣
xt=xk

= Hxt,kXδx,k

(30)

where Hxt,k is the Jacobian matrix of the measurement
function with respect to the true state evaluated at xk, and
Xδx,k is the Jacobian matrix of the true state with respect
to the error state evaluated at xk and is calculated by

Xδx,k = diag{I6,Qδθ,k, I9} (31)

Qδθ,k =
1

2


−qx,k −qy,k −qz,k
qw,k −qz,k qy,k
qz,k qw,k −qx,k
−qy,k qx,k qw,k

 . (32)

3) Injection: After the update, the nominal state is in-
jected using

xk ← xk ⊕ δ̂xk. (33)

4) Reset: The error reset function g is given by

g(δxk) = δxk ⊖ δ̂xk (34)

where ⊖ is the composition inverse operator of ⊕. The error
state is reset by the error reset function as

δxk ← g(δxk) = δxk ⊖ δ̂xk (35)

Therefore, the error state estimate and the covariance
matrix can be reset by the following expressions:

δ̂xk ← 018×1 (36)

Pk ← GkPkG
⊤
k (37)

where Gk is the Jacobian matrix of the error reset function g
with respect to the error state δx evaluated at the posteriori
error-state estimate δ̂xk and is calculated by

Gk = Gδx,k =
∂g

∂δx

∣∣∣∣
δx=δ̂xk

= diag{I6, I3 −
[
1

2
δ̂θk

]
×
, I9}

(38)

Note that since the term δ̂θk is very small and can be
neglected, this leads to the simplification of Gk = I18.

III. IMPLEMENTATION AND EXPERIMENT

A. Underwater Navigation

The system diagram of the ESKF implementation is illus-
trated in Fig. 2. The design of this implementation follows
the indirect state filtering approach discussed previously,
utilizing both AHRS and DVL as aiding sensors. The AHRS
contributes orientation and angular velocity data, while the
DVL measures linear velocity.

Fig. 2. INS-AHRS-DVL aided navigation system

The update step of the ESKF follows (25)-(29). Addition-
ally, the update equations for AHRS and DVL are represented
in (41) and (45), respectively. The update is performed
whenever information from one of the aiding sensors is
acquired.

1) AHRS: The AHRS measurement update is described
by

yAHRS,k = qm,k (39)

Hxt,k = HAHRS =
[
04×6 I4 04×9

]
(40)

δ̂xk = KAHRS,k

(
yAHRS,k −HAHRSx̂t

−
,k

)
. (41)

2) DVL: The DVL measurement update is described by

yDVL
DVL,k = vDVL

m,k (42)

yDVL,k = Rn
bR

b
DVLy

DVL
DVL,k (43)

Hxt,k = HDVL = Rn
bR

b
DVL

[
03×3 I3 03×13

]
(44)

δ̂xk = KDVL,k

(
yDVL,k −HDVLx̂t

−
,k

)
. (45)

Since the DVL measures the vehicle’s linear velocity in the
DVL frame {DVL}, it must be transformed to the linear
velocity in the navigation frame {n} by Rn

bR
b
DVL as shown

in (43).

B. Experimental Setup

1) Simulation Tools: The simulation tool used is Gazebo
[9], which enables virtual robot simulation with physics
and sensor capabilities. In Gazebo, the provided position
serves as the crucial ground truth reference for evaluating the
technique’s performance. The underwater environment was
simulated using Plankton [10], an open-source ROS package.
The true state of the AUV is denoted as xt.

2) Velocity aiding sensor signal loss capturing and simu-
lating: The experiment was conducted in the 1.2-meter depth
swimming pool where the DVL is attached to an AUV. The
position of the AUV was controlled through the joystick to
maneuver freely in the water. An obstacle was placed on the
pool floor to replicate poor bathymetry. The AUV was then
guided through the designated area with the obstacle, shown
in Fig. 3. Consequently, the collected DVL data exhibited
signal loss due to unfavorable bathymetry.

The DVL’s lossy signal was simulated using the Gilbert-
Elliott (GE) channel model with a geometric distribution, as
shown in Fig. 4 [11]. This widely used model represents
binary channels with intermittent errors, characterized by
two states: a normal state, where data is transmitted without
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Fig. 3. Illustration of DVL signal loss capturing experiment

Fig. 4. Gilbert-Elliott channel model state diagram

errors, and an error state, where errors occur. By incorporat-
ing the geometric distribution, the model accurately captures
the durations of each state, providing valuable insights into
channel properties. This approach effectively simulated the
erroneous DVL signal. The probabilities Pne (transition from
normal to error) and Pen (transition from error to normal)
allows control over the duration and frequency of state
changes.

3) Lawn mower path: To validate the technique, a lawn
mower path was employed in a validation experiment. The
ground truth trajectory of the AUV during the experiment
is illustrated in Figs. 7, 8, and 9, representing the desired
trajectory. The selection of this path is based on its frequent
usage in AUV surveying operations. The path exhibits hori-
zontal position variations while maintaining a fixed vertical
position.

Fig. 5. Overview of AUV system using Gazebo simulation

Fig. 6. INS system diagram

C. Implementation

The implementation of the underwater system, as depicted
in Fig. 5, involves the crucial role of the Gazebo physics
engine in generating the underwater environment for the
AUV. Sensors like the INS and lossy DVL were simulated
to evaluate the performance of the developed ESKF against
other navigation techniques. The logged data provides valu-
able insights into the system’s accuracy and reliability under
varying conditions.

1) INS Method: The INS module is responsible for in-
tegrating the IMU measurements, which are provided by
the Gazebo simulation, and estimating the vehicle’s position
and orientation, was implemented separately using a custom
software solution. The development of INS followed the
strapdown navigation approach. As illustrated in Fig. 6, the
INS module gives the vehicle’s estimated state x̂INS including
the estimated linear velocity, position, angular velocity, and
orientation.

2) EKF Method: The EKF was developed to obtain x̂EKF

using the robot localization package [12]. The package offers
a comprehensive set of tools and algorithms for sensor
fusion and state estimation in robotic systems, making it an
excellent choice for implementing the EKF.

3) ESKF Method: First, the ESKF, as explained in Section
II, was implemented to obtain δ̂xESKF using the nominal state
x̂INS from the INS module. Then, in this ESKF method, the
estimated state x̂ESKF is found by adding the correction term
δ̂xESKF to the nominal state x̂INS, as shown below: x̂ESKF =
x̂INS + δ̂xESKF.

IV. RESULT AND DISCUSSION

The experiment evaluated the impact of varying the error-
to-normal state transition probability on DVL signal loss,
comparing the INS, EKF, and ESKF navigation techniques.
The tested probabilities were 0.01, 0.033, and 0.1, with a
fixed error-to-normal transition probability of 0.1. Table I
summarizes the horizontal position errors. The INS method
yielded errors of 8.09741, 8.06606, and 7.73550; the EKF
method reported errors of 0.08371, 0.13573, and 0.67363;
and the ESKF method achieved the lowest errors of 0.04077,
0.04667, and 0.37127. Figs. 7, 8, and 9 visually depict the
horizontal position plots for the different navigation methods.
The green lines represent the output from the INS method,
the orange lines indicate the EKF method, the blue lines
indicate the ESKF method, and the red lines represent the
ground truth signal.
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The experiment results highlight the ESKF method’s
exceptional performance compared to the INS and EKF
methods. The ESKF method achieved the lowest horizontal
position errors, showing its robustness in estimating the
vehicle’s position even with the DVL signal loss. The ESKF
method possesses several advantageous characteristics, such
as its indirect state estimation approach, improved numerical
stability, reduced computational complexity due to the oper-
ating point being close to zero, and its ability to effectively
handle system nonlinearities. These key factors significantly
contribute to its superior performance.

Fig. 7. XY-position of the AUV with Pne = 0.01

Fig. 8. XY-position of the AUV with Pne = 0.033

Fig. 9. XY-position of the AUV with Pne = 0.1

TABLE I
HORIZONTAL POSITION ERRORS

Case Method Horizontal Position Error
Max Mean SD Final

Pne = 0.01
Pen = 0.1

ESKF 0.51838 0.19195 0.13057 0.04077
EKF 0.64652 0.20032 0.13993 0.08371
INS 8.22199 2.61992 2.34148 8.09741

Pne = 0.033
Pen = 0.1

ESKF 0.52441 0.19011 0.12986 0.04667
EKF 0.61178 0.19742 0.14906 0.13573
INS 8.21971 2.61209 2.33278 8.06606

Pne = 0.1
Pen = 0.1

ESKF 0.50959 0.18163 0.12704 0.37127
EKF 1.70157 0.43583 0.24092 0.67363
INS 7.73871 2.36539 2.16057 7.73550

V. CONCLUSION

Overall, the ESKF proved to be a highly effective choice
for underwater state estimation, even with the variation of the
DVL signal loss. The effectiveness in reducing errors vali-
dates its potential to enhance underwater navigation systems.
For future work, the vehicle model or alternative sensors
such as GNSS, pressure sensors, or hydroacoustic sensors
can provide additional data sources to improve accuracy.
Furthermore, implementing output smoothing techniques can
minimize sudden jumps and discontinuities of the navigation
output, resulting in more consistency of the vehicle states.
Implementing these enhancements can significantly improve
underwater vehicles’ output, thereby advancing their auton-
omy and capabilities.
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