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Abstract—Reversible computing has a remarkable ability
to reduce heat dissipation in computing machinery. It can
be broadly applied in various fields, which include Digital
signal processing, Cryptography, DNA computing, Network
congestion, Database transactions, Quantum computing, etc.
Fault detection is a complicated and demanding problem in
reversible circuits. Fault detection is an essential process in the
field of testing to ensure the reliability and integrity of the
circuit. This paper proposes a straightforward approach for
Single Missing Gate Fault (SMGF), Multiple Missing Gate Fault
(MMGF), Repeated Gate Fault (RGF) and Partial Missing Gate
Fault (PMGF) under the Missing Gate Fault (MGF) model. The
method includes the process of binary to gray code conversion
in order to determine the total number of test vectors to detect
the respective MGFs. Experimental results are performed on
reversible benchmark circuits to evaluate the number of test
vectors required to recognize all the MGFs. The comparative
analysis of the proposed work with the existing work is also
presented.

Index Terms—Reversible circuit, test vector, gray code, fault
detection

I. INTRODUCTION

In today’s technological world, computing requirements
and applications of favorable speed are growing day by day.
Traditional or classical computing is difficult to deal with
such increasing demand because of these native constraints,
such as dissipation of heat, low packaging density, restric-
tions on speed of light and many other factors [1]. The
traditional computation process functions as an irreversible
computation process, where the output cannot be determined
by the input. Due to these limitations, reversible computation
came into existence. It can be implemented on reversible
circuits, which are formed by the combination of reversible
gates which follows the two essential reversible logic func-
tions, i.e., an equal number of inputs and outputs and one-
to-one correspondence of all the inputs with the outputs.
The operation to be reversible is needed to be performed by
maintaining three conditions (a) there must be unique relation
between the inputs and outputs of the reversible circuits (b)
it should be possible to get the inputs that are derived from
the corresponding outputs (c) the circuit must assure the low-
power consumption with less heat dissipation [2].

A fault is an error or any undesirable feature that occurs
in a circuit, which affects the utility and performance of the
circuit that may be intended to last for an indefinite period

of time or for a limited interval of time. Thus, testing is one
of the essential procedures to identify the imperfections or
errors that may occur in the circuit to maintain the reliability
and steady functioning of the circuit [3].

In this paper, the identification of MGFs by the fault
detection method is considered for the reversible circuits con-
sisting of gates under the Multiple-Controlled-Toffoli (MCT)
library. The method we have put forward here identifies all
the SMGF, MMGF, RGF, and PMGF present in the circuit.
The technique starts with the simple conversion of test
vectors from binary to gray code. The level-wise computation
is performed in every gate of the circuit using the generated
gray codes. The most substantial contribution of this work
is that the proposed technique is suitable for determining all
the possible missing gate faults.

The remaining portion of the paper includes a brief back-
ground that comprises reversible logic functions, reversible
gates, reversible circuits, missing gate fault models, and some
existing works in Section II. The proposed fault detection
method is discussed in Section III. In Section IV and Sec-
tion V, the experimental results for some reversible bench-
mark circuits and conclusions are put forward, respectively.

II. BACKGROUND

This section includes the preliminaries of reversible logic
functions, reversible gates, reversible circuits, and missing
gate fault models. Also, we provide certain existing works
that are relevant to our proposed work.

A. Reversible Logic Function

A function is termed as a reversible function if it is bijec-
tive in nature, i.e., it includes both injective and surjective
operations. The law of reversible logic function constitutes
a reversible circuit. Thus, a reversible circuit consists of an
equal number of inputs and outputs and there is a one-to-
one relation between the inputs and the outputs. A reversible
function is realized by reversible gates of the circuit that
contain equal input and output variables. Let f be a function
and define as f : X → Y . The function f is surjective (onto)
if f (X)=Y and the function f is injective (one-to-one) if X
6= X ′ implies f (X) 6=f (X ′), then X=X ′.
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B. Reversible Gates

A reversible gate under the MCT library contains two
essential elements, a control point (•) and a target point (⊕),
as illustrated in Fig. 1. The operation of each gate is based on
reversible logic function, which includes an identical number
of inputs and outputs; it also maintains a distinct one-to-
one relation. In our proposed work, we have considered the
circuits belonging to the MCT or k-CNOT library, which is
one of the most widely used reversible gate libraries that
are composed of the three basic reversible gates NOT gate,
Feynman gate and Toffoli gate, as shown in Fig. 1.

Fig. 1. Structure of basic reversible gates

A simple and basic reversible gate is the NOT gate that
consists of one input and one output (1×1). The function of
NOT gate is A=A′ and the depiction of NOT gate is shown
in Fig. 1 (a). The 2×2 Feynman gate [4] as shown in Fig. 1
(b), also called controlled-not (CNOT). It is a 2-inputs and
2-outputs reversible gate that realizes as P=A, Q=A ⊕ B,
where A and B are the inputs of the gate and P and Q are the
outputs of the gate. The 3×3 Toffoli gate [5] is also known
as 3×3 Feynman gate or controlled-controlled-not (CCNOT)
gate, which is shown in Fig. 1 (c). It is described by the three
equations P=A, Q=B, R= AB⊕C, where A, B and C are
the inputs of the gate and P , Q and R are the outputs of the
gate.

C. Reversible Circuits

A circuit is considered as a reversible if it is based on a
bijective Boolean function and consists of reversible gates.
The reversible circuit follows cascade rules, i.e., the output
of one gate will act as an input to the next consecutive gate.
Thus the operation of the reversible circuit depends only
on the primary input and the primary output [6]. Moreover,
the reversible circuit does not follow fanout and feedback
connections [7].

D. Missing Gate Fault (MGF) Model in Reversible Circuits

A fault is an imperfection that occurs in the circuit,
which hampers the circuit from operating the functional
behavior normally. The complexity of testing is rationalized
by introducing the fault model that determines the presence
of faults in the circuit. A fault model recognizes the testing
objective and evaluates the type of fault that is appeared in
the circuit [8]. Various missing gate faults can be classified
as SMGF [8], MMGF [8], RGF [9], and PMGF [9]. The
illustration of these faults is described with the help of
Example 1.

Example 1. Let us consider the reversible benchmark circuit
Peres, which consists of 3-input and 3-output and 2 k-
CNOT gates, as shown in Fig. 2. Here, all the SMGF, MMGF,
RGF, and PMGF are demonstrated. When one k-CNOT gate
disappears from the circuit completely, it is called an SMGF.
In Fig. 2 (a), the first gate of the Peres reversible benchmark

Fig. 2. Illustration of Peres circuit for SMGF, MMGF, RGF and PMGF

circuit disappears, causing a faulty output as 〈 0 0 1〉 for
the test vector 〈 0 1 1〉 instead of fault free output 〈 1 0 1〉.
The gate count for a reversible circuit is the total number
of SMGFs [8], [9]. When a set of consecutive gates in a
reversible circuit get vanishes, it is known as an MMGF.
For a circuit with N number of gates, there are N (N -
1)/2 possible number of MMGFs [9]. Hence, there is only
one MMGF for reversible circuit Peres and it is shown in
Fig. 2 (b), where the test vector 〈 0 1 1〉 results in a faulty
output 〈 0 1 1〉 instead of fault free output 〈 1 0 1〉. The
RGF is the unwanted repetition of a gate in a reversible
circuit. The number of RGFs can be infinite. Any reversible
gate in the circuit can repeat for any number of times [9].
The RGF is shown in Fig. 2 (c), where the first gate of the
circuit repeats for one more time, due to which it results in
a faulty output 〈 0 0 1〉 for the test vector 〈 0 1 1〉 instead
of 〈 1 0 1〉. The PMGF corresponds to the disappearance
of one or more control points from a gate in a circuit. The
number of PMGFs refers to the number of controls which
are disappeared [9]. The occurrence of a PMGF is shown
in Fig. 2(d), where the control point of the second gate of
the circuit gets disappears, which results in a faulty output
〈 0 1 0〉 for the test vector 〈 0 0 0〉 on the contrary of fault
free output 〈 0 0 0〉.

E. Related Work

In 2004, the authors in [8] described the testing require-
ments of reversible circuits composed of k-CNOT gates
with respect to the MGF model. This paper proposed an
offline testing method using the Design For Testability (DFT)
concept that can detect the MGFs. This method introduced
the testing of reversible circuits by adding a single line that
contains control points for one or more CNOT gates which
require modification of the original reversible circuit. This
technique requires one to dN/2e test vectors for detecting
all possible MGFs. In 2008, the authors in [10] introduced
a method to get a complete test set concerning SMGF and
MMGF in reversible circuits. This fault detection method
includes dividing the actual circuit into sub-circuits to get
the complete test set. Next, the method used a set covering
method using linear programming to get a minimal complete
test set. In 2012, the authors in [11] presented a compact
test vector generation method named as Ping Pong method
for detecting SMGF and RGF in reversible circuits. This
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method includes four steps; firstly, for each SMGF and RGF,
the coverage list of faults is determined, then for simulating
the faults a possible order is explored, followed by cycle
dropping and selection of the best sequence. In 2014, the
authors in [12] proposed a fault detection technique for
detecting SMGF by using a Boolean generator computed by a
function to get a Boolean expression for generating a test set
to detect SMGFs of the reversible circuit. In 2016, Mondal
et al. [13] presented a technique for detecting two faults,
SMGF and PMGF, that comprises three phases of circuit
augmentation, fault localization and fault detection. In the
circuit augmentation process, a set of Toffoli gates and one
extra line is added to make the circuit testable. The fault
is detected after the circuit is augmented by applying test
vectors. In 2017, the authors in [14] provided a method for
generating test patterns for identifying the MMGFs where
only two missing gates are considered. The method initiates
the generation of SMGFs. Those are analyzed in the form
of a Binary Decision Diagram (BDD) structure. Finally, for
the identification of MMGFs, the test patterns are obtained
where dependency analysis is done between the two gates.
In 2021, the authors in [15] proposed a technique for fault
location and detection of the MCT-based reversible circuits
considering all the MGFs. Here, the primary circuit and its
complement are considered to find the faults. A comparator
is used to detect the faults where the input of the reversible
circuit and the output of complemented reversible circuit are
compared.

As per the above discussion, we have observed that there
is limited work for evaluating all the missing gate faults by
using only a single technique. Many existing works show
a complex procedure to detect the faults, which requires re-
construction or modification of the original circuit, increasing
the overhead circuit cost. Thus, we are motivated to propose
a straightforward technique to detect all the MGFs for the
SMGF, MMGF, RGF and PMGF without any modification
of the original reversible circuit.

III. PROPOSED FAULT DECTECTION METHOD

The method that we have proposed initiates with the
generation of a binary encoded pattern based on the count of
the input lines present in the reversible circuit. The process
flow diagram of the proposed method is depicted in Fig. 3.
At first, we assume the circuit of any fault’s inexistence. For
this purpose, a straightforward technique is implemented for
generating the test vectors. All the patterns present in binary
form are converted to respective gray codes at the next level.
Then, the obtained gray codes are fed as input to the circuit’s
first gate, and the level-wise computation process continues
for all the gates present in a given circuit. Finally, the output
is obtained in gray code at the last level of the circuit.
The entire missing gate faults (SMGF, MMGF, PMGF, and
RGF) are considered for the respective reversible circuits.
After inserting the fault, the same conversion process is
applied to the circuit consisting of faults, and by performing
level-wise computation, the final output is noted after the
primary gate of the circuit. The primary output responses are
compared with the output obtained from the circuit without
fault, which helps to determine the faults in the circuit. For
all the respective MGFs, the test vectors that are capable of

identifying all the MGFs are noted and counted separately.
The significance of converting binary code to gray code is
considered a well-defined conversion approach based on the
XORed operation. Moreover, the reversible gate under the
MCT library also operates on the XORed operation for the
target connection. Due to this reason, we have applied the
binary to the gray code conversion process in our proposed
method. Each component of the process flow diagram is
explained below:

Fig. 3. Process flow diagram of fault detection method

1) Generation of Binary Encoded Pattern based on
number of lines of the reversible circuit: All the
possible binary encoded patterns are generated based
on the number of input lines in the circuit. If n is the
number of input lines present in the circuit, then the
total number of binary encoded patterns for the circuit
will be 2n.

2) Conversion process of Binary Encoded Pattern to
Gray code: The generated test patterns are converted
from binary encoded patterns to gray code by the bi-
nary to gray code conversion technique. This technique
is implemented as there is a unique relation between
binary and gray code, which helps in maintaining the
unique relation between the input and the output. A
binary code can be converted to a gray code by a
straightforward method. Firstly, the Most Significant
Bit (MSB) of the binary code will be exactly similar to
the MSB of the gray code. The second bit of gray code
can be obtained from the binary code by performing
the XOR operation of MSB of binary code and the
second bit of binary code. Thus, all the other bits of
gray code can be obtained by performing an XOR
operation on the current and previous index bit of
binary code. For example, if a binary code is 1001,
its gray code will be 1101. The leftmost bit, i.e., MSB
of the binary code would be precisely similar to the
gray code. Therefore it is 1 and the second bit of
gray code is obtained by the XOR operation of the
first and second bit of binary code; thus, it is 1. The
same process continues for all the other bits and thus,
a binary code is converted to respective gray codes, as
shown in Fig. 4.

3) Perform Level-wise Computation and obtain final
output: The converted gray code is first fed into the
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Fig. 4. Illustration of Binary to Gray Conversion process

first gate of the reversible circuit. Then, the second gate
uses the output of the first gate as an input to perform
the level-wise computation. The same process contin-
ues until the final gate of the reversible circuit that
provides the primary output. This process is performed
level-wise in order to achieve the primary output for
each gate in the circuit.

The process of forming all the feasible test vectors for
detecting all MGFs is given in Algorithm 1. Also, the
complete flow of Algorithm 1 is demonstrated with the help
of Example 2

Algorithm 1: COMPLETE TEST SET GENERATION
FOR MGFS USING BINARY TO GRAY CODE CON-
VERSION PROCESS
Input: A reversible circuit consisting of N number of

reversible k-CNOT gates G0, G1, . . . , GN−1
and n number of input lines.

Cfault−free: Store the structure of the circuit without
consisting any fault
Cfaulty: Store the structure of the faulty circuit after
injecting all MGFs.
Output: Generation of all feasible test vectors for

detecting all possible MGFs in a given
circuit.

1 Consider the circuit Cfault−free
2 for i← 0 to (n− 1) do
3 Generate all the possible binary encoded patterns
4 Convert the generated pattern to Gray code
5 for j ← 0 to (N − 1) do
6 Perform computation on G0, G1, . . . , GN−1
7 Obtain final output after GN−1 gate operation

8 Insert MGFs to the circuit
9 Repeat Step 2

10 Fault simulation with each test vector from the
initial level of the circuit and compare the
primary output of Cfault−free and Cfaulty

11 Obtain the required test vectors for all the MGFs
from Step 10

Example 2. To explain the complete flow in Algorithm 1,
we consider the benchmark circuit Fredkin-6, as shown in
Fig. 5. In Step 1, consider a fault-free circuit Cfault−free
for the Fredkin-6 that comprises of three input lines (i.e.,
n=3) and three k-CNOT gates (i.e., N=3). In Step 2, we
generate all the possible binary encoded pattern 0 to (2n-1)
for the Fredkin-6 circuit. Thus, 8 binary encoded patterns

Fig. 5. Reversible circuit Fredkin-6

TABLE I
LEVEL-WISE COMPUTATION FOR THE FAULT-FREE Fredkin-6 CIRCUIT

L0 Gray L1 L2 L3

000 000 000 000 000
001 001 001 001 001
010 011 011 011 011
011 010 010 010 010
100 110 110 111 101
101 111 101 101 111
110 101 111 110 110
111 100 100 100 100

are generated for the circuit, which is shown in the first level
L0 of Table I. The generated binary pattern conversion to
their respective gray code is shown in the second column and
the first gate of the circuit is computed using the gray code,
which is shown in the third column (i.e., level L1) of Table I.
Similarly, after computing the second and third gate, the level
L2 and L3 are obtained, respectively, as shown in the fourth
and fifth columns of Table I. The final output is obtained after
computing the last gate, i.e., the last level L3 of the circuit,
which is shown in column 5 of Table I. This process continues
from the Step 3 to Step 7. In Step 8, all the faults SMGF,
MMGF, RGF, and PMGF under the MGF model are injected
into the circuit Fredkin-6. Each type of fault is illustrated
in Fig. 6. Since there are three gates in the Fredkin-6
circuit. Therefore, 3 numbers of SMGFs occurred that are
enumerated as fG1, fG2, and fG3. As per the definition of
MMGF, there is total 3 numbers of MMGFs occur in the
Fredkin-6 circuit, which is enumerated as fG1G2, fG2G3

and fG1G2G3. Here, we assume that the repetition of gates
occurs one more time after existing the actual gates; then,
there is one more level is created for each k-CNOT gate, as
shown in Fig. 6 (c). Therefore, the total number of RGFs is

Fig. 6. Illustration of Fredkin-6 for SMGF, MMGF, RGF and PMGF
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TABLE II
LEVEL-WISE COMPUTATION OF THE FAULTY Fredkin-6 CIRCUIT FOR DIFFERENT MGFS

Initial Level
(L0) Gray Code SMGF MMGF RGF PMGF

L1 L2 L3 L1 L2 L3 L1 L2 L3 L4 L1 L2 L3

000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
001 001 001 001 001 001 001 001 001 001 001 001 011 011 011
010 011 011 011 011 011 011 011 011 011 011 011 001 001 001
011 010 010 010 010 010 010 010 010 010 010 010 010 010 010
100 110 110 111 101 110 110 110 110 110 110 110 110 111 101
101 111 111 110 110 111 111 101 101 111 101 111 101 101 111
110 101 101 101 111 101 101 111 111 101 111 101 111 110 110
111 100 100 100 100 100 100 100 100 100 100 100 100 100 100

TABLE III
ILLUSTRATION OF FAULT COVERAGE FOR THE Fredkin-6 CIRCUIT

Test
Vectors

SMGF MMGF RGF PMGF
fG1 fG2 fG3 fG1G2 fG2G3 fG1G2G3 fRG1 fRG2 fRG3 fC1 fC2 fC3 fC4 fC5 fC6

000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
010 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0
011 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
100 0 1 1 1 1 1 1 1 1 0 1 0 0 0 0
101 1 0 1 1 1 0 0 0 1 0 0 0 1 0 0
110 1 1 0 1 1 1 1 1 0 0 0 0 0 0 1
111 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1

3 for the total k-CNOT gates present in Fredkin-6 circuit
and the RGFs are enumerated as fRG1, fRG2 and fRG3.
For evaluating the number of PMGFs, we consider each
control point is missing for one time (i.e., first-order PMGF),
then 6 number of PMGFs occur, which are enumerated as
fC1, fC2, fC3, fC4, fC5 and fC6. In Step 9, after injecting
all the MGFs to the circuit Fredkin-6 (i.e., Cfaulty), the
similar process is repeated from the Step 2, i.e., the faulty
circuit is computed level-wise till the last gate, as shown in
Table II. In Step 10, the fault simulation process is performed
for each test vector at the initial level of the circuit and
compared with the primary output between the Cfault−free
and Cfaulty circuits. In Step 11, all the test vectors are
extracted to construct the complete test set for MGFs, which
are derived from their corresponding distinct primary outputs
of the Cfault−free and Cfaulty circuits. The complete test
sets are {〈 1 0 1〉, 〈 1 1 0〉, 〈 1 0 0〉}, {〈 1 0 0〉, 〈 1 0 1〉,
〈 1 1 0〉}, {〈 1 0 0〉, 〈 1 1 0〉, 〈 1 0 1〉} and {〈 0 0 1〉, 〈 0 1 0〉,
〈 1 0 0〉, 〈 1 1 1〉, 〈 0 1 1〉, 〈 1 0 1〉, 〈 1 1 0〉} for detecting
all the MGFs in Fredkin-6 circuit. The detailed illustration
of the fault coverage table for all SMGFs, MMGFs, RGFs,
and PMGFs under the MGF fault model using the Binary to
Gray conversion process for the Fredkin-6 circuit is shown
in Table III.

IV. EXPERIMENTAL RESULTS

The experimental work for the proposed method is per-
formed on reversible benchmark circuits, which is elaborated
in Table IV. The considered reversible benchmark circuits
available in [16] that are given in the first column of Table IV.
The second and third column of the table gives the number
of gates (N ) and the number of input lines (n) present
in the circuit, respectively. The fourth column of Table IV
shows the respective number of SMGFs, MMGFs, RGFs,
and PMGFs. The SMGF count is the same as the number of
gates present in the circuit (N ) and the MMGF count can

be calculated by [N(N − 1)/2]. RGF count is the same as
the number of gates, i.e., one gate is added in extra in the
existing circuits. The PMGF count is determined based on
the number of control points present in the circuit. Column 5
of Table IV indicates the count of test vectors necessary for
identifying all considered MGFs after applying the proposed
method to the respective circuits.

TABLE IV
EXPERIMENTAL RESULTS FOR VARIOUS BENCHMARK CIRCUITS FOR THE

FAULT DETECTION OF MGFS

Benchmark
Circuit N n

Total No.
of MGFs

Total No.
of Test Vectors

SMGF MMGF RGF PMGF MGFs
fredkin-6 3 3 3 3 3 6 7
peres 2 3 2 1 2 3 4
ham3 5 3 5 10 5 6 3
nth prime 4 3 4 6 4 5 6
exe 4 3 4 6 4 4 6
3 17 13 6 3 6 15 6 7 7
miller-11 5 3 5 10 5 8 5
rd-32 5 4 5 10 5 6 12
toffoli-double4 2 4 2 1 2 4 3
mod10-176 7 4 7 21 7 13 14
mod5d4 5 9 5 10 5 8 8
rd32d1 4 4 4 6 4 5 6
mod5d2 9 5 9 36 9 16 5
hwb4d1 17 4 17 136 17 27 7
4 49d3 12 4 12 66 12 15 4
mod5d1 8 5 8 28 8 12 4
xor5d1 4 5 4 6 4 4 5
Average 6.24

We have done our experimental work using moderate-sized
reversible circuits. We obtain the test vectors that are respon-
sible for detecting the MGFs using the binary to gray code
conversion technique. After examining the circuits, we have
observed that the average number of test vectors required is
6.24 for finding all MGFs in Table IV. The final outcome of
the proposed method includes the complete fault coverage of
all MGFs. The reversible benchmark circuit mod10-176 has
a higher number of test vector (14 nos.) requirements for
detecting all the MGFs from the proposed method, which
could be improved after applying a minimization process.
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TABLE V
COMPARISON RESULTS OF THE NUMBER OF FAULTS AND THE COMPLETE TEST SET WITH [12]

Benchmark
Circuit N n

Total No.
of Faults

[12]

Total No.
of Faults

[Proposed]

Total No.
of Test Vectors

[12]

Total No.
of Test Vectors

[Proposed]
SMGF (SMGF+MMGF+RGF+PMGF) SMGF (SMGF+MMGF+RGF+PMGF)

ham3tc 5 3 5 26 4 3
rd32 4 4 4 26 6 12
xor5d1 4 5 4 18 2 5
3-17tc 6 3 6 34 2 7
mod5d1 8 5 8 56 2 4
4 49d3 12 4 12 105 4 4
hwb4d1 17 4 17 197 7 7
mod5d2 9 5 9 70 2 5
rd32d1 4 4 4 19 6 6
mod5d4 5 9 5 28 4 8
Average 7.40 57.90 3.90 6.10

Table V shows the comparative results of the proposed
method with the existing work of [12]. The first, second
and third columns of Table V are the same presentation, as
mentioned in Table IV. Columns 4 and 5 indicate the average
count of the total faults for the existing work [12] and the
proposed method, respectively. Columns 6 and 7 in Table V
present the entire count of test vectors required for detecting
the faults by the existing work [12] and the proposed work.
The authors in [12] developed a Boolean expression based
generator with the help of the Boolean difference technique.
The complete test set is constructed for detecting the SMGFs
using the Boolean expression only. However, the length of
the Boolean expression is more for large-sized circuits. Due
to this reason, the derived Boolean generator needs to be
simplified. In our proposed method, we use the binary to
gray code conversion technique and perform the level-wise
computation to detect SMGFs along with MMGFs, RGFs
and PMGFs with 100% fault coverage. Thus, the method
that we have used covers faults to a great extent than the
work of [12]. The average number of total faults is 57.90,
covered by our proposed method, as shown in Column 5 of
Table V. Whereas the work in [12] covered only SMGFs and
the average number of faults is 7.40, as shown in Column 4
of Table V. The highest increase number of test vectors
is 71.43% for the circuit 3-17tc by our proposed method,
as analyzed with existing work [12]. An equal number of
test vectors is occurred to detect the faults for the circuits
4 49d3, hwb4d1 and rd32d1 by both proposed and existing
work [12]. As per the results reported in Table V, though
the test vector requirement of our proposed method is found
to be more, as compared to the work in [12], but proposed
method is capable of covering all the possible faults under
the MGF model.

V. CONCLUSION

In this work, we have investigated fault testing methods
for the SMGF, MMGF, RGF and MMGF under the fault
model MGF in reversible circuits. We have developed a
straightforward fault detection method that converts binary to
gray codes to detect all the MGFs in the reversible circuits by
generating the test vectors. We have performed experimental
work on small and medium reversible circuits. The method
will be extended in the future to minimize the number of
test vectors that are obtained from the proposed method. The

experimental result will also be extended to large reversible
circuits.
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