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Abstract—Network traffic has changed significantly since the
introduction of 5G technology. The massive flow of connected
devices as well as new applications are causing a variety of traffic
patterns, quality of service (QoS) requirements and scalability
challenges. The solution to these problems is network slicing
which enables operators to distribute resources and set network
characteristics per slice by constructing multiple virtual network
slices within the shared 5G infrastructure. Resources are reserved
for each slice for some time period. Traffic prediction with high
accuracy is of great importance in the dynamic environment of
5G networks for resource planning and scheduling as well as
for reliable and effective transmission of network data. In this
paper, We generate user requests in a slice having arrival and
departure rates using Poisson distribution. We did a comparative
analysis of traffic prediction and resource allocation using deep
learning models such as Long Short Term Memory(LSTM), Bidi-
rectional LSTM(BiLSTM), Stacked LSTM and Gated Recurrent
Unit(GRU).

Index Terms—5G Network, Network Slicing, Traffic Predic-
tion, Resource Allocation, LSTM, Stacked LSTM, Bidirectional
LSTM, GRU.

I. INTRODUCTION

5G Network is the fifth generation wireless cellular tech-
nology succeeding the fourth generation (4G) LTE network
technology. The major purpose of 5G is to provide faster and
more stable wireless communication. It is capable of handling
significantly higher data rates and with much lower latency
than 4G. Data rates in 5G are expected to be substantially
higher than 4G. 5G provides faster downloads and uploads
of huge files and smoother streaming of high-quality video
material. 5G networks are designed to have substantially lower
latency than 4G networks which implies that data may be
delivered between devices much faster. This is especially
important for real-time applications such as remote surgery,
driverless cars and virtual reality. Overall, 5G network tech-
nology is predicted to significantly increase mobile network
connectivity which will enable new and innovative applications
and use cases that earlier generations of mobile network
technology were unable to support.

Three different categories of services that the 5G net-
work offers are enhanced mobile broadband(eMBB), massive
machine type communication(mMTC) and ultra-reliable low
latency communication(uRLLC). eMBB focuses on offering
end-users faster and more reliable mobile broadband. eMBB
services are intended to transmit high-speed data to smart-

phones, tablets and other mobile devices at up to ten times the
speed of 4G. Video streaming, internet gaming and virtual and
augmented reality are all examples of EMBB applications [1].
uRLLC focuses on providing ultra-reliable, low-latency com-
munication for mission-critical applications. uRLLC services
are meant to provide quick and dependable communication
for Remote surgery, driverless cars and industrial automation
which are all examples of real-time applications. mMTC is
focused on connecting a large number of devices, such as IoT
gadgets and sensors. mMTC services are intended to accom-
modate a large density of connected devices while consuming
little power and costing little money. Smart cities, smart homes
and industrial automation are some of the applications for
mMTC [2].

Network slicing in 5G is a technique that allows network
operators to construct several virtual networks, also known as
network slices, using a single physical 5G network infrastruc-
ture. Each network slice is tailored to specific application or
user requirements such as low latency for driverless vehicles,
high bandwidth for streaming video or high dependability
for industrial automation. Network slicing divides the 5G
network into many logical portions that may be designed
and controlled individually. Each network slice has its own
set of resources, including computing power, storage, and
bandwidth which can be allocated and optimized dynamically
based on the demands of the applications or users that use that
slice. Network slicing enables network operators to provide
customized services to various consumers and applications
while also maximizing network resource use. It also allows for
the quick deployment of new services and applications since
network slices may be supplied and updated quickly without
affecting other slices or overall network performance. Overall,
5G network slicing [3] is a strong tool for network operators
to unleash the full potential of 5G technology and allows for
a broad spectrum of applications from consumer-oriented to
mission-critical industrial.

To address the enormous traffic load which resulted from
massive diverse data that increase the deployment and distri-
bution of 5G network resources in major cities, and improve
the intelligence and dependability of traffic management. It is
of utmost importance to estimate traffic with high precision.
The 5G network traffic is primarily time-series data, thus the
prediction problem may be turned into a time-series prediction
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forecasting task. As a result, many artificial intelligence (AI)-
based machine learning (ML) and deep learning (DL) models
have been devised for predicting mobile data traffic.

In this paper, the Poisson distribution is used to generate
user requests in slices having arrival and departure rates. We
distributed resources to each slice across a predetermined time
frame known as a prediction window (PW) which consists of
several short time steps. We predict the network data for the
next PW from the values of previous and current PW using
deep learning models mainly consisting of LSTM, Stacked
LSTM, Bidirectional LSTM, and GRU.

The remaining sections are arranged as follows: Section 2
presents a review of the present state of the art in traffic predic-
tion and resource allocation in 5G networks. In Section 3, we
discuss problem definition and various deep learning models
for traffic prediction. Section 4 showcases the experimental
results and section 5 provides a comprehensive summary of
our work.

II. RELATED WORK

The incorporation of software-defined networking (SDN)
and network function virtualization (NFV) technologies with
network slicing in 5G is presented in [4]. The combination of
SDN and NFV allows for dynamic and efficient management
of network slices. The paper [5] investigates the possibilities
of applying network slicing in various vertical industries,
including transportation, healthcare, and smart cities. Authors
in [6] proposed an intent-based networking (IBN) approach
that can separate the core network and radio access network
domains to address the challenges in deploying and managing
5G networks. In [7], a network slice broker tries to efficiently
allocate network resources to fulfill the unique needs of various
users and applications. It manages network resources and
slices the network into many virtual networks, each tailored
to a unique user/application requirement using an SDN archi-
tecture.

The paper [8] presents a study on cellular data traffic
prediction using recurrent neural networks (RNNs) with a
focus on LSTM networks. The research demonstrates that
LSTM models outperform both the Statistical autoregressive
integrated moving average (ARIMA) model and conventional
feed-forward neural networks (FFNN) in terms of prediction
accuracy. The work in [9] uses LSTM neural networks to
detect patterns in traffic data and generate accurate predictions.
The results suggest that the proposed model outperforms tra-
ditional prediction models like ARIMA and linear regression.
In [10], the authors aim to predict traffic flow in real-time
which can help operators to optimize network resource alloca-
tion and manage network congestion. They collected the actual
traffic data from a live network and compared effectiveness of
gated recurrent unit (GRU) and LSTM against artificial neural
networks (ANNs) and ARIMA. In paper [11] hybrid approach
of statistics and deep learning was proposed to predict traffic
in 5G networks. This approach provides true predictions and is
helpful to network operators in planning a network resource
allocation. The paper [12] 5G networks traffic is predicted

using SDN and fusion learning. The authors collect network
traffic data from multiple sources such as switches and routers
and generate a unified view of the network by making use of
SDN. This entire network view aids in forecasting future net-
work traffic patterns. A machine learning-based methodology
for mobile data traffic forecasting in 5G cellular networks was
proposed in paper [13]. The LSTM model outperforms random
forest(RF) and support vector regression(SVR) indicating its
effectiveness for improving resource allocation and network
optimization in 5G networks. In [14], a smoothed LSTM is
introduced as a novel technique for 5G traffic prediction with
enhanced accuracy and stability over typical LSTM models.

The paper [15] provides an overview of the fundamental
concepts, practical uses, and challenges associated with the
implementation of deep reinforcement learning(DRL) tech-
niques in 5G networks and moreover. The work in [16]
highlights the capabilities of DRL methods in resource al-
location for 5G communications. The suggested approach
exhibits promising results in adapting to changing network
conditions and improving system performance. The authors
in [17] proposed a technique that integrates DRL and network
slicing to optimize the distribution of resources in networks
that experience fluctuations in traffic patterns and have diverse
resource needs. By employing this method, network slicing
can be effectively implemented in dynamic scenarios, leading
to efficient resource utilization and improved network perfor-
mance. In paper [18] authors employed a deep Q-network
(DQN) architecture, which integrates deep learning and rein-
forcement learning, to optimize the allocation of resources in
network slices. It aims to enhance resource utilization, elevate
service quality, and reduce the operational expenses associated
with network slicing. The authors in [19] presented a deep
reinforcement learning technique that incorporates discrete
normalized advantage functions. This suggested method aims
to maximize the allocation of resources to improve overall
network performance by leveraging deep learning techniques.
Incorporating IBN with 5G networks provides flexible, quick,
and programmable network slicing, enabling service providers
to effectively distribute network resources and satisfy the
various demands of various applications and services [20].

III. METHODOLOGY

A. Problem Definition

We generate user requests in slice m using the Poisson
distribution having departure and arrival rates of µ[m] and
λ[m], respectively. Resources are allocated to each slice during
a specified time period known as the prediction window(PW )
which consists of many small time intervals. More particularly,
the resource allocation occurs at the start of the next PW .
Note that the duration of the PW and the time intervals within
it can be dynamically altered to accommodate the needs of
mobile network slices such as the characteristics of 5G new
radio (NR).

By analyzing the rm(t) values of the previous and current
PWs, we calculate the r̄m(t) for the next PW to reduce the
MSE value for the predicted values at each prediction time.
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In order to address this issue, we utilized Deep Learning
Models such as LSTM, Stacked LSTM, Bidirectional LSTM
and GRU. These are recurrent neural networks that can learn
the dependencies within a sequential data sequence so as to
anticipate a time series problem.

In this technique, the input data for deep learning models
abbreviated as Dinput, comprises the actually required re-
sources (Am(t)) from the previous and current PWs for each
slice at every time step. It is denoted as {Am(t-2PW),...,Am(t-
PW),...,Am(t)}. This input data is used in the next PW to
forecast the allocated resources for the mth slice at time step
t. The slice isolation degree is determined by the confidence
level χ.

The isolation of individual slices implies maintaining a con-
sistent allocation of resources without changes over a defined
timeframe. This is essential for ensuring service quality by
preventing traffic load variations in one slice from impacting
others. To achieve this, it is necessary to keep resources
for future users of each slice, avoiding frequent resource
reconfiguration. As a result, each slice is assigned a dedicated
portion of the total resources (θ) exclusively for a certain
period, while also having the flexibility to utilize Residual
resources if additional capacity is required.

Let the predicted resource allocation for mth slice in
the next PW be represented by Ppredicted = {pm(t +
1), ..., pm(t+PW )}.The sample mean and standard deviation
of Ppredicted are computed as p̄m = 1

PW

∑PW
k=1 pm(t+k) and

σ(pm) =
√

1
PW

∑PW
k=1(pm(t+ k)− p̄m)2 respectively. Dur-

ing simulation, the confidence level χ, which can be adjusted
dynamically for each slice, ranges between 0 and 1. Thus,
the confidence interval can be determined as rm(t) ϵ p̄m ±
Z( 1−χ

2 ).
σ(pm)√
PW

, t ϵ [t, t + D∆], whereas D∆ denotes the PW.
This interval specifies the amount of resources to be allocated
(rm(t)) to slice m in the next PW . To guarantee service
quality, slice isolation, and compliance with traffic service
level agreements (SLAs), the maximum value of the prediction
interval is employed to allocate resources for slice m in the
upcoming PW. This allocation takes into consideration the
association between predicted values and errors.

B. Predictive Deep Learning Models
1) Long short-term memory(LSTM): A neural network ar-

chitecture called an LSTM was created to manage long-term
dependencies in sequential data. It has proven to be highly
effective in tasks such as speech recognition, natural language
processing and time-series prediction. To accomplish their
efficacy LSTMs employ a memory cell and a collection of
gates that govern the flow of information into and out of the
cell as shown in Fig. 1. The gates choose which information to
keep and which to discard, while the memory cell records and
updates the current state of the network. The gates used in an
LSTM are the input gate, forget gate and output gate. The input
gate controls how much new information enters the cell while
the forget gate controls how much old information is removed.
The output gate controls how much data is transferred to the
final output or the next layer of the network.

Fig. 1: LSTM

Fig. 2: Stacked LSTM

2) Stacked LSTM: As seen in Fig. 2, a stacked LSTM is
a particular form of neural network design that comprises of
many layers of LSTM units. Each layer processes the input
data at different levels of abstraction and the output of one
layer is utilised as the input for the next layer. In other words,
after receiving the input data, the first layer produces a set of
output values, which are then passed on to the second layer. A
fully connected layer receives the output of the final layer and
uses it to create the network’s ultimate output. For problems
where the model must learn hierarchical representations of the
input data, stacked LSTMs are especially helpful. The model
can learn more complex associations and recognise longer-
term dependencies in the input data by piling up numerous
LSTM layers on top of one another.

3) Bidirectional LSTM: The forward and backward infor-
mation flow of a sequence through an LSTM network are
combined in a neural network architecture called a BiLSTM.
A BiLSTM processes the input sequence in both forward and
backward directions using two independent LSTM layers.The
outputs of both layers are then concatenated at each time step
to form the final output which incorporates data from both
directions and is represented in Fig. 3 A BiLSTM can capture
both forward and backward context by processing the input
sequence in both ways which can result in predictions that are
more accurate.
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Fig. 3: Bidirectional LSTM

Fig. 4: GRU

4) Gated recurrent unit(GRU): It is a form of RNN archi-
tecture. It is similar to LSTM in that it is meant to capture
long-term relationships in sequential data, but it has a simpler
architecture and fewer parameters. GRUs are made up of
recurrent neural network units that are equipped with gates
that regulate the flow of information through the network. The
gates in a GRU include an update gate and a reset gate which
control which information is passed from the previous time
step to the current time step as shown in Fig. 4. A GRU’s
update gate regulates how much of the previous hidden state
is transferred to the current time step, while the reset gate
decides how much of the current input is mixed with the prior
hidden state. These gates enable the GRU to preserve or reject
prior time step information according to its relevance to the
current time step.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we compare the performance of four deep
learning models for resource requirement prediction: LSTM,
stacked LSTM, Bidirectional LSTM, and GRU.

A. Simulation Environment

In this simulation, there are 10 slices, 200 RAN RBs, and
a Prediction Window (PW) of 600 seconds. The λ values
assigned to the 10 slices are [0.7, 0.75, 0.6, 0.75, 0.65, 0.75,

0.6, 0.8, 0.7, 0.75], while the corresponding µ values are [0.75,
0.85, 0.75, 0.85, 0.75, 0.85, 0.76, 0.85, 0.75, 0.85]. It should
be noted that a PW consists of numerous small time steps.
Specifically, large-scale resource allocation occurs at the start
of the next PW, whereas small-scale resource allocation occurs
at each time step. In our simulations, the total number of
time steps is 60,000 and the PW size is 600. The simulations
were carried out in Python utilizing the Keras and Tensorflow
packages.

B. Dataset and Preprocessing

For each second in a slice, we have used a Poisson dis-
tribution to generate the users’ arrival and departure requests
having departure and arrival rates µ and λ respectively. From
the arrival and departure user requests, we then calculated the
ongoing requests for every second. Later used this data as
input data to the deep learning models.

C. Establish deep learning models

The input and output sequences are split into training and
testing sets, in which 80% of the data is used as the training set
and 20% as the testing set. All the Deep learning model layers
consist of 100 units followed by a dense layer. The models are
compiled with the mean squared error as the loss function and
the Adam optimizer. During training models, 20% of training
set is used as validation set. Models are trained for 100 epochs
with a batch size of 1.

D. Performance comparison of traffic prediction models

In Fig. 5, we first evaluate the prediction of resource
requirement over 12000 timesteps for LSTM (Fig. 5a), Stacked
LSTM (Fig. 5b), Bidirectional LSTM (Fig. 5c) and GRU
(Fig. 5d)respectively and compared the results with the actual
resource requirement. The blue line indicates the actual traffic
data while the red line indicates the predicted traffic data. The
experiment demonstrates that the predicted values for the GRU
Model accurately represent the actual traffic values.

E. Evaluation Index

Mean squared error (MSE) is a popular metric for assessing
the performance of deep learning models. MSE is calculated
by comparing the model’s predicted values to their correspond-
ing true values. The squared differences across all samples in
the dataset are then averaged to determine the MSE.

Equation 1 shows the mathematical expressions for the
evaluation formula, where y signifies the predicted values and
f signifies the actual values. A reduced MSE value indicates
that the model’s predictions are more accurate, which implies
a higher level of performance.Conversely, a higher MSE value
signifies larger prediction errors and lower performance.

MSE =
1

n

n∑
t=1

(yt − ft)
2 (1)

Fig. 6 shows the mean squared error in terms of the number
of epochs for LSTM (Fig. 6a), Stacked LSTM (Fig. 6b),
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Fig. 5: Resource requirement prediction for Poisson Arrivals and Departures. (a) LSTM. b) Stacked LSTM c) BiLSTM d)
GRU

(a) (b)

(c) (d)

Fig. 6: Training and Validation Loss for Poisson Arrivals and Departures. (a) LSTM. b) Stacked LSTM c) BiLSTM d) GRU

Bidirectional LSTM (Fig. 6c), and GRU (Fig. 6d) respectively
for Poisson distribution data.

Fig. 7 shows the Mean Squared Error Comparison of LSTM,
Stacked LSTM, BiLSTM, and GRU methods for Poisson
distribution data. The experiment demonstrates that the MSE
loss for the GRU Model is 0.0682 which is less as compared
to the other models.

V. CONCLUSION

In this paper, We generated user requests in a slice having
arrival and departure rates using Poisson distribution. We
predict the resource allocation for the next PW from the values
of previous and current PW. We did a comparative analysis of
traffic prediction and resource allocation on traffic generated
through Poisson distribution using deep learning models such
as LSTM, Stacked LSTM, Bidirectional LSTM, and GRU.
From the comparative analysis, we conclude that the GRU

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 100



Fig. 7: Mean Squared Error Comparison of LSTM, Stacked
LSTM, BiLSTM, GRU methods for Poisson Arrivals and
Departures.

model performs better than the other three models on traffic
generated through Poisson distribution.
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