
Suicidal text detection on social media for suicide prevention

using deep learning models

Neha Sharma1 and Prashant Karwasra2

School of Computing

Indian Institute of Information Technology, Una, India
1neha724@gmail.com, 2karwasraprashant10@gmail.com

Abstract- The advent of social media has transformed the way

we communicate and connect, enabling individuals worldwide

to instantly and openly interact with friends, family, and

colleagues on a frequent basis. People utilize social media

platforms as a means to express their opinions, share personal

experiences, narratives, and challenges. Nevertheless, concerns

have arisen due to the growing prevalence of suicidal content on

social media platforms, where discussions of hardship, thoughts

of death, and self-harm are widespread, particularly among

younger generations. Consequently, harnessing the power of

social media to detect and identify suicidal behavior, including

the presence of suicidal thoughts, becomes essential in offering

appropriate interventions that discourage self-harm and

suicide, as well as in preventing the spread of suicidal ideations

throughout these platforms. This paper presents suicidal

content detection using two deep learning architectures, LSTM,

and DistilBERT with the latter showing better performance in

respectively. We conclude by drawing implications for deep

learning architectures in detecting suicidal content on social

media and an initial deployment of the models using Telegram

bot which detects the message containing suicidal content and

sends a motivational message in response and also informs their

friends and relative through alerts.

 Keywords: social media, suicide, suicidal-content,

suicidal ideation, LSTM, DistilBERT, Deep Learning.

I. INTRODUCTION

Annually, approximately 703,000 individuals succumb to

suicide, translating to a distressing frequency of one person

per second, with many more individuals attempting it [1]. The

impact of each suicide is profound, affecting not only

families and communities but entire nations, leaving lasting

consequences on those left behind. It is important to

recognize that suicide spans across all age groups, and in

2019, it ranked as the fourth leading cause of death among

individuals aged 15-29 worldwide [1]. Suicide denotes a

deliberate act wherein an individual intentionally seeks to end

their own life [2]. The act of suicide is a multidimensional

phenomenon that arises from the intricate interplay of various

factors, including biological, psychological, social, cultural,

and spiritual elements [3]. Numerous individuals opt for

social media platforms as a means to express their thoughts,

emotions, and everyday encounters, including the challenges

and difficulties they face. Suicidal ideation, thoughts of

death, and self-harm emerge as prevalent topics in these

online discussions. The identification of individuals

expressing suicidal tendencies or harboring suicidal thoughts

through their tweets or blogs holds immense significance.

This is because the early detection of such individuals has the

potential to prevent numerous lives from being lost. In this

paper we have examined social media content to detect

automatically suicidal ideation and behaviors with the help of

LSTM and DistilBERT model architectures. This paper

presents a detailed overview of above two deep learning

architectures that can be used for detection of suicidal content

and identify the suicidal ideation. However, little is known

on how some deep learning models account for detecting

suicidal text on social media. Performing this investigation is

the main goal of this paper.

II. SOCIAL MEDIA DATASET

The social media dataset, curated by Nikhileswar Komati and

publicly available on Kaggle[6], comprises posts obtained

from the "SuicideWatch" subreddits on the Reddit platform.

These posts were collected using the Pushshift API,

encompassing posts made between December 16, 2008, and

January 2, 2021. The dataset consists of 237,074 data points

and is divided into two categories: suicide and non-suicide,

with an equal distribution of 116,037 data points in each

category. On average, the length of each data point in the

dataset is approximately 700 words. However, due to

computational hardware constraints, in this paper our study

focuses on a subset of 120,000 randomly selected data points,

with an equal distribution of 60,000 data points for both the

suicide and non-suicide categories. The newly constructed

dataset does not contain any null values in the text or class

values.

III. THE MODELS

In this section, we detail the working of model architectures

based on Long Short Term Memory (LSTM) model [7] and

the DistilBERT model [8], where these models were

calibrated to the social media dataset separately.

A. Long Short Term Memory Model

LSTM: Long Short-Term Memory (LSTM) is a specific type

of Recurrent Neural Network (RNN) architecture developed

to address the challenge of vanishing or exploding gradients

encountered in traditional RNNs. LSTMs, in particular, are

highly effective in processing and predicting sequential data,

such as time series, speech, text, handwriting, and

classification. They have achieved successful results in

various domains, including natural language processing,

speech recognition, machine translation, and image

TENCON 2023 - 2023 IEEE Region 10 Conference (TENCON)
31 Oct - 3 Nov 2023. Chiang Mai, Thailand

WedA1V.1

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 24

captioning. In our study, we utilize LSTMs for the

classification task, specifically for distinguishing between

suicidal and non-suicidal content in the given text.

The LSTM model consists of following components:

1. Cell State (Ct): The cell state acts as a conveyor belt,

allowing information to flow through the entire chain of

LSTM units. It helps the LSTM remember or forget

information over long sequences.

2. Input Gate (i): The input gate determines how much of

the new input should be added to the cell state. It takes

into account the previous hidden state (ht-1) and the

current input (xt), and produces a value between 0 and 1

for each element of the cell state.

3. Forget Gate (f): The forget gate decides which

information to discard from the cell state. It takes the

previous hidden state (ht-1) and the current input (xt) as

inputs, and produces a forget factor between 0 and 1 for

each element of the cell state.

4. Output Gate (o): The output gate determines the output

of the LSTM unit. It considers the previous hidden state

(ht-1) and the current input (xt), and produces an output

between 0 and 1.

5. Hidden State (h): The hidden state is the output of the

LSTM unit. It is a filtered version of the cell state,

controlled by the output gate. The hidden state captures

relevant information from the input sequence and carries

it forward to the next time step.

During the forward pass, the LSTM takes a sequence of

inputs (x1, x2, ..., xn) and processes them one by one,

updating its internal states at each time step. The input and

forget gates regulate the flow of information into and out of

the cell state, while the output gate controls the amount of

information that is passed to the next hidden state.

Figure 1. Working of LSTM architecture

As shown in table 1, for our model architecture we use 2

LSTMs layers each of have 100 LSTM Units or cells and an

Embedding layer and one dense layer for classification using

softmax as activation function and we choose the categorical

cross-entropy as loss function and adam as optimizer we

evaluate our model on accuracy metrics and add dropout

layers after every LSTMs layers whose dropout rate is 0.2

and we kept the learning rate default and choose the batch

size of 128 and length of each sentence equal to 200.

Table 1. Hyperparameter values for LSTM model

S.NO. Hyper Parameter value

1. LSTM Units 100

2. Dropout Rate 0.2

3. Learning Rate 0.001

4. Batch Size 128

5. Sequence Length 200

6. Number of Epochs 17(30 early stopping)

B. DistilBERT Model

DistilBERT: DistilBERT is a variant of the popular BERT

(Bidirectional Encoder Representations from Transformers)

architecture. DistilBERT aims to reduce the computational

resources required by BERT while maintaining similar

performance.

The working of DistilBERT involves following key

components:

Transformer Encoder: DistilBERT is built upon the

transformer encoder architecture. Transformers consist of

self-attention mechanisms and feed-forward neural networks,

allowing them to capture contextual relationships and

dependencies within a sequence of tokens effectively.

Distillation: The main technique used in DistilBERT is

knowledge distillation. It involves training a smaller and

faster model (DistilBERT) to replicate the behavior and

knowledge of a larger and more computationally expensive

model (BERT). The smaller model learns from the

predictions and hidden representations of the larger model,

allowing it to benefit from its knowledge.

Parameter Sharing: DistilBERT reduces the number of

parameters compared to BERT by employing parameter

sharing. Specifically, it shares the parameters between the

layers of the transformer encoder, which significantly

reduces the model's size and computational requirements.

Task-Specific Layers: DistilBERT adds task-specific layers

on top of the transformer encoder. These layers are used to

fine-tune the model for specific natural language processing

(NLP) tasks, such as sentiment analysis, named entity

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 25

recognition, question answering, and text classification.

These task-specific layers are trained along with the pre-

trained transformer encoder during the fine-tuning process.

During the pre-training phase, DistilBERT follows a

similar approach to BERT. It is initially trained on a large

corpus of unlabeled text in a self-supervised manner, where

it learns to predict masked words within sentences and

perform next sentence prediction tasks. In the fine-tuning

phase, DistilBERT is further trained on task-specific labeled

datasets. The pre-trained transformer encoder is frozen, and

the task-specific layers are trained using labeled data from the

specific task. The model is optimized using gradient-based

optimization techniques such as stochastic gradient descent

(SGD) or Adam.

 DistilBERT achieves a balance between computational

efficiency and model performance. Although it sacrifices

some model capacity compared to BERT, it still retains much

of the knowledge and capabilities of the larger model. This

makes DistilBERT well-suited for scenarios where

computational resources are limited or where fast inference

is crucial, while still achieving competitive performance on

various NLP tasks.

Figure 2. Working of DistilBERT architecture

In Table 2, we present the DistilBERT model with the

learning rate set to 5e-5. The training process operates for one

epoch, utilizing a batch size of 32 for training and 20 for

evaluation. We implemented a warm up period of 500 steps,

and logging will take place every 500 steps as well. We set

the weight decay for the model at 0.01. The evaluation

strategy is determined based on steps.

Table2. Hyperparameter values for DistilBERT model.

S.No. Hyper- Parameter Values

1. Learning Rate 5e-5

2. Number of Epochs 1

3. Training Batch Size 32

4. Evaluation Batch Size 20

5. Warmup Steps 500

6. Logging Steps 500

7. Weight Decay 0.01

8. Evaluation Strategy Steps

IV. METHOD

A. EVALUATION METRICS

Evaluation metrics used to determine the effectiveness of the

proposed methods can be found underneath:

● True Positive (TP): an outcome where the model

correctly predicts the positive class.

● True Negative (TN): an outcome where the model

correctly predicts the negative class.

● False Positive (FP): an outcome where the model

incorrectly predicts the positive class.

● False Negative (FN): an outcome where the model

incorrectly predicts the negative class.

1. Accuracy: It measures the overall correctness of the

model’s predictions by comparing the number of correct

predictions with the total number of predictions. We

calculate the accuracy using the following equation:

Accuracy = (TN + TP) / (TN + TP + FP + FN)

2. Precision: Precision calculates the proportion of

correctly predicted positive instances out of all instances

predicted as positive. It is useful when the focus is on

minimizing false positives. We calculate the precision

using the following equation

 Precision = (TP) / (TP + FP)

3. Recall: Recall calculates the proportion of correctly

predicted positive instances out of all actual positive

instances. It is useful when the goal is to minimize false

negatives. We calculate the Recall using the following

equation:

 Recall = (TP) / (TP + FN)

4. F1 Score: F1 Score is the harmonic mean of

precision and recall. It provides a single metric that

balances both precision and recall. We calculate the F1

Score using the following equation:

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 26

F1 = (2 * Precision * Recall) / (Precision + Recall)

V. RESULTS

The training and validation accuracy graph in figure 3

demonstrated a consistent upward trend, the validation

accuracy closely followed the training accuracy, suggesting

minimal overfitting and generalization of the model.

 Figure 3: Graph Training accuracy Vs. Validation accuracy

 of LSTM

 The training and validation loss graph exhibited in figure 4

shows a steady decrease over epochs, indicating effective

model optimization. The validation loss closely tracked the

training loss, indicating good generalization and minimal

overfitting.

Figure 4: Graph Training Loss Vs Validation Loss of LSTM

The fine-tuning process resulted in a notable increase in

accuracy, as shown in the graph of figure 5. The accuracy

steadily improved over steps, demonstrating the effectiveness

of fine-tuning for enhancing the model’s performance. The

results highlight the successful adaptation of the pre-trained

model to suicidal text detection.

Figure 5: Evaluation accuracy of DistilBERT architecture

The fine-tuning process yielded a notable decrease in loss, as

depicted in figure 6. The loss consistently decreased over

iterations, indicating successful fine-tuning and improved

model convergence. These findings demonstrate the

effectiveness of fine-tuning for refining the model’s

performance and optimizing the task-specific for suicidal text

detection.

Figure 6: Evaluation Loss of DistilBERT architecture

As shown in table 3, the LSTM model achieved an

accuracy of 0.9326 and a corresponding loss of 0.1793 with

a sequence length of 200 words. However, the DistilBERT

model with a sequence length of 512 words, showed a

significant improvement in accuracy to 0.9776, along with a

much lower loss of 0.0637. These results highlight the

superior performance of DistilBERT compared to LSTM,

indicating its effectiveness in effectively handling longer

sequences of text and hence increasing the chances of

accurate detection of suicidal text.

Table 3. Accuracy and Loss with respect to architecture and

sequence length

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 27

S.No

.

Architectu

re

Sequence

Length(w

ords)

Accuracy Loss

1. LSTM 200 0.9326 0.1793

2. DistilBERT 512 0.9776 0.0637

The confusion metrics for each of the LSTM and DistilBERT

model architectures that have been considered in this paper

are shown in Table 4. In the case of the LSTM model, when

non-suicide instances were classified, a precision of 0.95,

recall of 0.91, and an F1-score of 0.93 were achieved, with a

support of 18050 instances. Similarly, when suicide instances

were classified, a precision of 0.91, recall of 0.95, and an F1-

score of 0.93 were attained, with a support of 17950

instances.

In contrast, the DistilBERT model classified non-suicide

instances with, a precision of 0.98, recall of 0.98, and an F1-

score of 0.98, with a support of 19877 instances. Similarly,

when suicide instances were classified, a precision of 0.98,

recall of 0.98, and an F1-score of 0.98 were achieved, with a

support of 19723 instances. The DistilBERT architecture

therefore, accurately classified both non-suicide and suicide

instances as is highlighted by these results. Also, the result

clearly showed that the DistilBERT model that took the

longer sequence length performed better than LSTM which

took a shorter sequence length.

Table 4. Confusion metrics with respect to architecture and

each class

Architecture Sequence

Length(w
ords)

Precisi

on

Recall F1-

score

Support

LSTM non-
suicide

0.95 0.91 0.93 18050

 suicide 0.91 0.95 0.93 17950

DistilBERT non-

suicide

0.98 0.98 0.98 19877

suicide 0.98 0.98 0.98 19723

VI. DISCUSSION & CONCLUSIONS

Based on the accuracy and loss data presented in the table

and graphs, we can conclude that DistilBERT outperforms

other architectures. DistilBERT is particularly well-suited for

general domains, as it effectively handles large sequence

lengths and readily accommodates various words that help

classify suicidal content and ideation.

In this research paper, two models are proposed for the

analysis and detection of suicidal content across various

social media platforms. Currently, our focus has been on

deploying the model to Telegram using the Telegram Bot

API. The deployed model reads messages sent by users and

responds accordingly if any suicidal content is detected.

Responses may include sending motivational quotes or alert

messages to the user's close friends or family members,

providing support and intervention for suicidal ideation. To

train our models, we utilized data from the "SuicideWatch"

subreddit on Reddit [6]. We trained LSTM and performed

fine-tuning of the DistilBERT architecture. LSTM performs

best for sequence lengths below 200, but the model’s

performance significantly declines for longer sequences.

DistilBERT is trained on sequences longer than 512 using the

parameter truncation set to true.

The main contribution of this work lies in enhancing the

quality of suicidal content detection through fine-tuning the

DistilBERT model. Moving forward, there is potential for

using larger datasets to achieve better fine-tuning or

incorporating more advanced architectures such as BERT or

ChatGPT. Additionally, expanding the data sources beyond

Reddit to scrape from various platforms and deploying the

model for real-time detection across multiple social media

platforms, rather than just Telegram, would greatly benefit

individuals in obtaining appropriate assistance to address

suicidal ideation Some of these ideas and others form the

immediate next steps for us to pursue in the near future.

ACKNOWLEDGMENTS

The authors are grateful to Indian Institute of Information

Technology, Una for providing computational resources for

this paper.

REFERENCES

[1] Kochanek, J. Q. Xu, and E. Arias, “Mortality in the United

States, 2019,” NCHS Data Brief, no. 395, Hyattsville, MD:

National Center for Health Statistics, 2020.

[2] G. Astoveza, R. J. P. Obias, R. J. L. Palcon, R. L. Rodriguez,

B. S. Fabito, and M. V. Octaviano, “Suicidal behavior

detection on Twitter using neural network,” in TENCON 2018-

2018 IEEE Region 10 Conference, 2018, pp. 0657-0662.

[3] M. K. Nock, G. Borges, E. J. Bromet, C. B. Cha, R. C. Kessler,

and S. Lee, “Suicide and Suicidal behavior,” Epidemiologic

Reviews, vol. 30, no. 1, pp. 133-154, 2008.

[4] M. M. Tadesse et al., “Detection of suicide ideation in social

media forums using deep learning,” Algorithms, vol. 13, no. 1,

2019.

[5] T. H. H. Aldhyani et al., “Detecting and analyzing suicidal

ideation on social media using deep learning and machine

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 28

learning models,” International Journal of Enviormental

Research and Public Health, vol. 19, no. 19, pp. 12635,2022.

[6] Nikhileswar Komati, “Suicide and Depression Detection,”

Kaggle 2021.[Online]. Available:

https://www.kaggle.com/datasets/nikhileswarkomati/suicide-

watch [Accessed: 10 Feb 2023].

[7] Hochreiter, Sepp, and Jürgen Schmidhuber. “Long short-term

memory.” Neural computation 9.8 (1997): 1735-1780.

[8] Sanh, Victor, et al. “DistilBERT, a distilled version of BERT:

smaller, faster, cheaper and lighter.” arXiv preprint arXiv:

1910.01108 (2019).

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 29

