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Abstract- The advent of social media has transformed the way 

we communicate and connect, enabling individuals worldwide 

to instantly and openly interact with friends, family, and 

colleagues on a frequent basis. People utilize social media 

platforms as a means to express their opinions, share personal 

experiences, narratives, and challenges. Nevertheless, concerns 

have arisen due to the growing prevalence of suicidal content on 

social media platforms, where discussions of hardship, thoughts 

of death, and self-harm are widespread, particularly among 

younger generations. Consequently, harnessing the power of 

social media to detect and identify suicidal behavior, including 

the presence of suicidal thoughts, becomes essential in offering 

appropriate interventions that discourage self-harm and 

suicide, as well as in preventing the spread of suicidal ideations 

throughout these platforms. This paper presents suicidal 

content detection using two deep learning architectures, LSTM, 

and DistilBERT with the latter showing better performance in 

respectively. We conclude by drawing implications for deep 

learning architectures in detecting suicidal content on social 

media and an initial deployment of the models using Telegram 

bot which detects the message containing suicidal content and 

sends a motivational message in response and also informs their 

friends and relative through alerts. 

    Keywords: social media, suicide, suicidal-content, 

suicidal ideation, LSTM, DistilBERT, Deep Learning. 

I. INTRODUCTION 

 

Annually, approximately 703,000 individuals succumb to 

suicide, translating to a distressing frequency of one person 

per second, with many more individuals attempting it [1]. The 

impact of each suicide is profound, affecting not only 

families and communities but entire nations, leaving lasting 

consequences on those left behind. It is important to 

recognize that suicide spans across all age groups, and in 

2019, it ranked as the fourth leading cause of death among 

individuals aged 15-29 worldwide [1]. Suicide denotes a 

deliberate act wherein an individual intentionally seeks to end 

their own life [2]. The act of suicide is a multidimensional 

phenomenon that arises from the intricate interplay of various 

factors, including biological, psychological, social, cultural, 

and spiritual elements [3]. Numerous individuals opt for 

social media platforms as a means to express their thoughts, 

emotions, and everyday encounters, including the challenges 

and difficulties they face. Suicidal ideation, thoughts of 

death, and self-harm emerge as prevalent topics in these 

online discussions. The identification of individuals 

expressing suicidal tendencies or harboring suicidal thoughts    

through their tweets or blogs holds immense significance. 

This is because the early detection of such individuals has the 

potential to prevent numerous lives from being lost. In this 

paper we have examined social media content to detect 

automatically suicidal ideation and behaviors with the help of  

LSTM and DistilBERT model architectures. This paper 

presents a detailed overview of above two deep learning 

architectures that can be used for detection of suicidal content 

and identify the suicidal ideation.  However, little is known 

on how some deep learning models account for detecting 

suicidal text on social media. Performing this investigation is 

the main goal of this paper. 

 

II. SOCIAL MEDIA DATASET 

The social media dataset, curated by Nikhileswar Komati and 

publicly available on Kaggle[6], comprises posts obtained 

from the "SuicideWatch" subreddits on the Reddit platform. 

These posts were collected using the Pushshift API, 

encompassing posts made between December 16, 2008, and 

January 2, 2021. The dataset consists of 237,074 data points 

and is divided into two categories: suicide and non-suicide, 

with an equal distribution of 116,037 data points in each 

category. On average, the length of each data point in the 

dataset is approximately 700 words. However, due to 

computational hardware constraints, in this paper our study 

focuses on a subset of 120,000 randomly selected data points, 

with an equal distribution of 60,000 data points for both the 

suicide and non-suicide categories. The newly constructed 

dataset does not contain any null values in the text or class 

values. 

 

III. THE MODELS 

In this section, we detail the working of model architectures 

based on Long Short Term Memory (LSTM) model [7] and 

the DistilBERT model [8], where these models were 

calibrated to the social media dataset separately.  

A. Long Short Term Memory Model 

LSTM: Long Short-Term Memory (LSTM) is a specific type 

of Recurrent Neural Network (RNN) architecture developed 

to address the challenge of vanishing or exploding gradients 

encountered in traditional RNNs. LSTMs, in particular, are 

highly effective in processing and predicting sequential data, 

such as time series, speech, text, handwriting, and 

classification. They have achieved successful results in 

various domains, including natural language processing, 

speech recognition, machine translation, and image 
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captioning. In our study, we utilize LSTMs for the 

classification task, specifically for distinguishing between 

suicidal and non-suicidal content in the given text. 

The LSTM model consists of following components: 

1. Cell State (Ct): The cell state acts as a conveyor belt, 

allowing information to flow through the entire chain of 

LSTM units. It helps the LSTM remember or forget 

information over long sequences. 

2. Input Gate (i): The input gate determines how much of 

the new input should be added to the cell state. It takes 

into account the previous hidden state (ht-1) and the 

current input (xt), and produces a value between 0 and 1 

for each element of the cell state. 

3. Forget Gate (f): The forget gate decides which 

information to discard from the cell state. It takes the 

previous hidden state (ht-1) and the current input (xt) as 

inputs, and produces a forget factor between 0 and 1 for 

each element of the cell state. 

4. Output Gate (o): The output gate determines the output 

of the LSTM unit. It considers the previous hidden state 

(ht-1) and the current input (xt), and produces an output 

between 0 and 1. 

5. Hidden State (h): The hidden state is the output of the 

LSTM unit. It is a filtered version of the cell state, 

controlled by the output gate. The hidden state captures 

relevant information from the input sequence and carries 

it forward to the next time step. 

 
During the forward pass, the LSTM takes a sequence of 

inputs (x1, x2, ..., xn) and processes them one by one, 

updating its internal states at each time step. The input and 

forget gates regulate the flow of information into and out of 

the cell state, while the output gate controls the amount of 

information that is passed to the next hidden state.    

                                                      
Figure 1. Working of LSTM architecture 
 

As shown in table 1, for our model architecture we use 2 

LSTMs layers each of have 100 LSTM Units or cells and an 

Embedding layer and one dense layer for classification using 

softmax as activation function and we choose the categorical 

cross-entropy as loss function and adam as optimizer we 

evaluate our model on accuracy metrics and add dropout 

layers after every LSTMs layers whose dropout rate is 0.2 

and we kept the learning rate default and choose the batch 

size of 128 and length of each sentence equal to 200. 

 

Table 1.  Hyperparameter values for LSTM model  

 

S.NO. Hyper Parameter value 

1. LSTM Units 100 

2. Dropout Rate 0.2 

3.    Learning Rate 0.001 

4.    Batch Size 128 

5.    Sequence Length 200 

6. Number of Epochs 17(30 early stopping) 

 

 

B. DistilBERT Model 

  

DistilBERT: DistilBERT is a variant of the popular BERT 

(Bidirectional Encoder Representations from Transformers) 

architecture. DistilBERT aims to reduce the computational 

resources required by BERT while maintaining similar 

performance. 

 

The working of DistilBERT involves following key 

components: 

 

Transformer Encoder: DistilBERT is built upon the 

transformer encoder architecture. Transformers consist of 

self-attention mechanisms and feed-forward neural networks, 

allowing them to capture contextual relationships and 

dependencies within a sequence of tokens effectively. 

Distillation: The main technique used in DistilBERT is 

knowledge distillation. It involves training a smaller and 

faster model (DistilBERT) to replicate the behavior and 

knowledge of a larger and more computationally expensive 

model (BERT). The smaller model learns from the 

predictions and hidden representations of the larger model, 

allowing it to benefit from its knowledge. 

Parameter Sharing: DistilBERT reduces the number of 

parameters compared to BERT by employing parameter 

sharing. Specifically, it shares the parameters between the 

layers of the transformer encoder, which significantly 

reduces the model's size and computational requirements. 

Task-Specific Layers: DistilBERT adds task-specific layers 

on top of the transformer encoder. These layers are used to 

fine-tune the model for specific natural language processing 

(NLP) tasks, such as sentiment analysis, named entity 
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recognition, question answering, and text classification. 

These task-specific layers are trained along with the pre-

trained transformer encoder during the fine-tuning process. 

 

During the pre-training phase, DistilBERT follows a 

similar approach to BERT. It is initially trained on a large 

corpus of unlabeled text in a self-supervised manner, where 

it learns to predict masked words within sentences and 

perform next sentence prediction tasks. In the fine-tuning 

phase, DistilBERT is further trained on task-specific labeled 

datasets. The pre-trained transformer encoder is frozen, and 

the task-specific layers are trained using labeled data from the 

specific task. The model is optimized using gradient-based 

optimization techniques such as stochastic gradient descent 

(SGD) or Adam. 

 

       DistilBERT achieves a balance between computational 

efficiency and model performance. Although it sacrifices 

some model capacity compared to BERT, it still retains much 

of the knowledge and capabilities of the larger model. This 

makes DistilBERT well-suited for scenarios where 

computational resources are limited or where fast inference 

is crucial, while still achieving competitive performance on 

various NLP tasks. 

 
 

 
Figure 2.  Working of DistilBERT architecture 

 

In Table 2, we present the DistilBERT model with the 

learning rate set to 5e-5. The training process operates for one 

epoch, utilizing a batch size of 32 for training and 20 for 

evaluation. We implemented a warm up period of 500 steps, 

and logging will take place every 500 steps as well. We set 

the weight decay for the model at 0.01. The evaluation 

strategy is determined based on steps. 

 

 

Table2. Hyperparameter values for DistilBERT model. 

   

S.No.  Hyper- Parameter Values 

1. Learning Rate 5e-5 

2. Number of Epochs 1 

3. Training Batch Size 32 

4. Evaluation Batch Size 20 

5. Warmup Steps 500 

6. Logging Steps 500 

7. Weight Decay 0.01 

8. Evaluation Strategy Steps 

 

IV. METHOD 

 

A. EVALUATION METRICS 

 

Evaluation metrics used to determine the effectiveness of the 

proposed methods can be found underneath: 

● True Positive (TP): an outcome where the model 

correctly predicts the positive class. 

● True Negative (TN): an outcome where the model 

correctly predicts the negative class. 

● False Positive (FP): an outcome where the model 

incorrectly predicts the positive class. 

● False Negative (FN): an outcome where the model 

incorrectly predicts the negative class. 

 

 

1. Accuracy:  It measures the overall correctness of the 

model’s predictions by comparing the number of correct 

predictions with the total number of predictions. We 

calculate the accuracy using the following equation: 

 

Accuracy =   ( TN + TP ) / ( TN + TP + FP + FN ) 

 

2. Precision: Precision calculates the proportion of 

correctly predicted positive instances out of all instances 

predicted as positive. It is useful when the focus is on 

minimizing false positives. We calculate the precision 

using the following equation 

 

 Precision =  ( TP ) / ( TP + FP ) 

 

3. Recall: Recall calculates the proportion of correctly 

predicted positive instances out of all actual positive 

instances. It is useful when the goal is to minimize false 

negatives. We calculate the Recall using the following 

equation: 

                        Recall = (TP ) / ( TP + FN ) 

 

4. F1 Score: F1 Score is the harmonic mean of   

precision and recall. It provides a single metric that 

balances both precision and recall. We calculate the F1 

Score using the following equation: 
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F1  =  ( 2 * Precision * Recall ) / ( Precision + Recall ) 

 

     

V.  RESULTS 

 

The training and validation accuracy graph in figure 3 

demonstrated a consistent upward trend, the validation 

accuracy closely followed the training accuracy, suggesting 

minimal overfitting and generalization of the model. 

 

 
 Figure 3: Graph Training accuracy Vs.  Validation accuracy  

 of LSTM 

 

 The training and validation loss graph exhibited in figure 4 

shows a steady decrease over epochs, indicating effective 

model optimization. The validation loss closely tracked the 

training loss, indicating good generalization and minimal 

overfitting. 

  

 
 
Figure 4: Graph Training Loss Vs Validation Loss of LSTM 

 

The fine-tuning process resulted in a notable increase in 

accuracy, as shown in the graph of figure 5. The accuracy 

steadily improved over steps, demonstrating the effectiveness 

of fine-tuning for enhancing the model’s performance. The 

results highlight the successful adaptation of the pre-trained 

model to suicidal text detection. 

 

 
 
Figure 5: Evaluation accuracy of DistilBERT architecture 

 

The fine-tuning process yielded a notable decrease in loss, as 

depicted in figure 6. The loss consistently decreased over 

iterations, indicating successful fine-tuning and improved 

model convergence.  These findings demonstrate the 

effectiveness of fine-tuning for refining the model’s 

performance and optimizing the task-specific for suicidal text 

detection. 

 

 
Figure 6:  Evaluation Loss of DistilBERT architecture 

 

As shown in table 3, the LSTM model achieved an 

accuracy of 0.9326 and a corresponding loss of 0.1793 with 

a sequence length of 200 words. However, the DistilBERT 

model with a sequence length of 512 words, showed a 

significant improvement in accuracy to 0.9776, along with a 

much lower loss of 0.0637. These results highlight the 

superior performance of DistilBERT compared to LSTM, 

indicating its effectiveness in effectively handling longer 

sequences of text and hence increasing the chances of 

accurate detection of suicidal text.  

 

Table 3.  Accuracy and Loss with respect to architecture and 

sequence length 
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S.No

.  

Architectu

re 

Sequence 

Length(w

ords) 

Accuracy Loss 

1. LSTM 200 0.9326 0.1793 

2. DistilBERT 512   0.9776 0.0637 

 
The confusion metrics for each of the LSTM and DistilBERT 

model architectures that have been considered in this paper 

are shown in Table 4. In the case of the LSTM model, when 

non-suicide instances were classified, a precision of 0.95, 

recall of 0.91, and an F1-score of 0.93 were achieved, with a 

support of 18050 instances. Similarly, when suicide instances 

were classified, a precision of 0.91, recall of 0.95, and an F1-

score of 0.93 were attained, with a support of 17950 

instances. 

 

In contrast, the DistilBERT model classified non-suicide 

instances with, a precision of 0.98, recall of 0.98, and an F1-

score of 0.98, with a support of 19877 instances. Similarly, 

when suicide instances were classified, a precision of 0.98, 

recall of 0.98, and an F1-score of 0.98 were achieved, with a 

support of 19723 instances. The DistilBERT architecture 

therefore, accurately classified both non-suicide and suicide 

instances as is highlighted by these results. Also, the result 

clearly showed that the DistilBERT model that took the 

longer sequence length performed better than LSTM which 

took a shorter sequence length.  

 

Table 4. Confusion metrics with respect to architecture and 

each class 

 

Architecture Sequence 

Length(w
ords) 

Precisi

on 

Recall F1-

score 

Support 

LSTM non-
suicide 

0.95 0.91 0.93 18050 

 suicide 0.91 0.95 0.93 17950 

DistilBERT non-

suicide 

0.98 0.98 0.98 19877 

suicide 0.98 0.98 0.98 19723 

 

   

VI. DISCUSSION & CONCLUSIONS 

   
Based on the accuracy and loss data presented in the table 

and graphs, we can conclude that DistilBERT outperforms 

other architectures. DistilBERT is particularly well-suited for 

general domains, as it effectively handles large sequence 

lengths and readily accommodates various words that help 

classify suicidal content and ideation.  

  

In this research paper, two models are proposed for the 

analysis and detection of suicidal content across various 

social media platforms. Currently, our focus has been on 

deploying the model to Telegram using the Telegram Bot 

API. The deployed model reads messages sent by users and 

responds accordingly if any suicidal content is detected. 

Responses may include sending motivational quotes or alert 

messages to the user's close friends or family members, 

providing support and intervention for suicidal ideation. To 

train our models, we utilized data from the "SuicideWatch" 

subreddit on Reddit [6]. We trained LSTM and performed 

fine-tuning of the DistilBERT architecture. LSTM performs 

best for sequence lengths below 200, but the model’s 

performance significantly declines for longer sequences. 

DistilBERT is trained on sequences longer than 512 using the 

parameter truncation set to true. 

 

The main contribution of this work lies in enhancing the 

quality of suicidal content detection through fine-tuning the 

DistilBERT model. Moving forward, there is potential for 

using larger datasets to achieve better fine-tuning or 

incorporating more advanced architectures such as BERT or 

ChatGPT. Additionally, expanding the data sources beyond 

Reddit to scrape from various platforms and deploying the 

model for real-time detection across multiple social media 

platforms, rather than just Telegram, would greatly benefit 

individuals in obtaining appropriate assistance to address 

suicidal ideation Some of these ideas and others form the 

immediate next steps for us to pursue in the near future. 
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