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Abstract—Multispectral sensors are used to ensure visibility
in various applications. However, when multiple sensors are
used for capturing images, a misalignment may occur between
the images taken by each sensor unless special care is taken.
To correct such misalignments, image registration based on
feature matching is conducted. However, the features captured
by each sensor differ, thereby complicating the registration
process. In this study, we develop an approach to overcome
these challenges and to improve the registration accuracy
between short-wave infrared and mid-wave infrared (SWIR and
MWIR, respectively) images. First, we compare and validate
SiLK, a detector-based feature matching method, and LoFTR,
a detector-free feature matching method. The results clearly
demonstrate the superior accuracy of LoFTR. Moreover, SWIR
and MWIR images exhibit a characteristic color inversion
according to Kirchhoff’s law. Therefore, by inverting the color
of a SWIR image and aligning the color tone between image
pairs, we can improve the matching accuracy. Furthermore,
by diversifying the color tones of the training data through
augmentation, we can handle the domain gap between SWIR
and MWIR images, thereby further enhancing the matching
accuracy.

Index Terms—image registration, feature matching, infrared
dataset, domain gap

I. INTRODUCTION

Effective imaging at nighttime or under other low-light
conditions is essential in various applications. It generally
requires specialized sensing devices instead of widely used
visible-light cameras. Night vision devices that are capable
of capturing images under these conditions have evolved
significantly over time. Early devices were active night vision
devices that relied on the reflection of emitted infrared (IR)
light for imaging. Subsequent advancements leveraged im-
provements in imaging and amplification elements to develop
low-light night vision devices that amplified scarce visible
light to enable imaging. These devices, often embodied
in personal wearable goggles, are widely used today [1].
However, a notable shortcoming of these devices is their
dependence on a certain level of environmental light, without
which their performance significantly deteriorates. As such,
there is a growing interest in passive night vision devices
utilizing IR sensors [2].

Passive night vision devices utilizing IR sensors can cap-
ture images in near-infrared (NIR), mid-infrared, and far-
infrared wavelengths and are used in a variety of applications.
For instance, NIR sensors are commonly found in commer-
cial portable cameras, and far-infrared cameras are used in

nighttime advanced driver-assistance systems. While using an
IR sensor to target a single wavelength band can be effective
for specific applications such as automation by a computer, it
poses problems in terms of visual perception when the gen-
erated images are presented to humans. Therefore, research
is currently being conducted to improve image perception by
integrating images obtained from sensors covering multiple
wavelength bands [3], [4].

To create an image with high visual perception from
images obtained from cameras of multiple wavelength bands,
it is necessary to properly integrate the information. How-
ever, unless a complex optical mechanism is incorporated,
images captured from different viewpoints using different
lenses must be properly integrated. Differences in lens char-
acteristics can be compensated by performing calibration in
advance. Differences in viewpoints, especially when different
IR cameras are fixed in relative arrangements, can also
be effectively addressed through precalibration. However,
when a dispersed arrangement of individual cameras is re-
quired, a method capable of accommodating this is necessary.
Therefore, this study is conducted to develop a method for
finding corresponding points to accurately perform geometric
transformations for image integration from images obtained
from IR cameras of different wavelength bands.

Studies have actively investigated matching feature points
between multiple visible images. These include early re-
search on SIFT [5] and SURF [6] and the introduction of
refined handcrafted features like KAZE [7] and AKAZE
[8]. Recently, studies have widely investigated deep learning
techniques that achieve dramatic improvements in accuracy,
such as SuperPoint [9], SuperGlue [10], SiLK [11], and
LoFTR [12]. While these methods have been confirmed to
be somewhat effective when targeting visible images, when
applying them to images obtained from cameras of different
wavelength bands, problems such as the difference in the
characteristics of images due to the wavelength bands must
be considered. When using learning-based methods, such
differences in characteristics can be recognized as a domain
gap because feature points having different features should
be classified as the same. To improve the matching accuracy,
such a domain gap must be overcome even though dealing
with domain gaps is generally difficult [13], [14].

In this study, we focus on two high-accuracy meth-
ods, SiLK, a detector-based feature matching method, and
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LoFTR, a detector-free feature matching method, to estab-
lish correspondences between feature points across images
of different wavelength bands. As SiLK and LoFTR are
both learning-based methods, how learning is performed can
significantly affect the accuracy. Therefore, in this study, we
aim to improve the feature matching accuracy by adopting
an approach similar to domain generalization methods to
overcome domain gaps. Specifically, we implement data
augmentation by varying the hue of the training data and
perform preprocessing of the inference data to reduce domain
gaps. For evaluating the accuracy, we use images obtained
from multiple helicopter-mounted IR cameras of different
wavelength bands. The errors in the converted images for
image registration, one of the applications of image match-
ing, was adopted as an evaluation criterion.

The rest of this paper is organized as follows. Section
II introduces existing datasets composed of IR images and
feature matching methods for visible-light images. Section
III proposes preprocessing for the inference process and data
augmentation for the training process for image matching
after analyzing the matching methods used for visible-light
images. Section IV presents the evaluation of the proposed
scheme using IR images proposed in [15]. Finally, Section
V presents the conclusions of this study.

II. RELATED WORK

A. IR Image Dataset

IR image datasets may contain images captured at different
wavelengths [16]–[18]. The KAIST Multispectral Pedestrian
Dataset [16] contains pedestrian detection data captured us-
ing uncooled IR and color cameras. The TNO Image Fusion
Dataset [18] contains night images captured using visible
light, NIR, and long-wavelength IR. Such multispectral data
might differ slightly in terms of the sensor positioning,
angles, and other shooting parameters for each wavelength
band. Therefore, unless complex optical mechanisms are
incorporated, image registration is required. For example,
the Multimodal Stereo Dataset [19]–[21] contains scenes in
which image alignment is not achieved. In the RGB-NIR
dataset [22], the relative transformations of the images are
known to be estimated using SIFT [5] and RANSAC [23]
for achieving image registration of RGB and IR images. As
many IR image datasets consist of pairs of RGB and IR
images, many studies have performed matching between vis-
ible and IR images; however, few have performed matching
between IR images of different wavelength bands.

One study collected data from short-wave infrared and
mid-wave infrared (SWIR and MWIR, respectively) images
taken at night to create highly visible images [15]. Pilot
evaluations indicated that inverting the intensity of SWIR
images and registering them with MWIR images improved
the visibility. However, SWIR and MWIR images had to
be registered by a manual process, making it unsuitable for
real-time applications. Therefore, the present study aims to
perform automatic registration by using feature matching of
data.

B. Feature Matching

Feature matching is one of the techniques used in im-
age registration. Registration is conducted as follows. First,

feature matching is performed, and then, outlier detection is
performed using outlier detection methods such as RANSAC
[23]. Next, the transformation matrix is estimated, and this
result is used to perform a homography transformation to ul-
timately achieve image alignment. Therefore, to enhance the
accuracy of registration, it is essential to use an appropriate
feature matching method. Two main approaches are used for
feature matching: detector-based methods and detector-free
methods.

1) Detector-based Feature Matching: Detector-based
methods are traditional techniques that first detect feature
points and then match them using methods such as mutual
nearest neighbor or SuperGlue [10]. Before the advent of
deep learning, hand-crafted local features exhibited good
performance. The main methods are SIFT [5], ORB [24],
and SURF [6]. In recent years, deep-learning-based methods
such as LIFT [25], MagicPoint [26], and SuperPoint [9] have
become the mainstream owing to their high accuracy. At the
time of writing, the most accurate detector-based method is
SiLK [11]; it employs a simple architecture, implicitly learns
keypoints, and is highly effective. However, detector-based
methods are known to fail in difficult cases involving changes
in illumination, repetitive structures, or low-texture scenarios.

2) Detector-free Feature Matching: To address the short-
comings of detector-based methods, detector-free methods
have been proposed. These methods directly look for sim-
ilarities between images to be matched. Therefore, they
are robust even in repetitive patterns or textureless scenes.
Furthermore, some of these methods perform coarse match-
ing before fine matching to reduce the computational load.
LoFTR is one of the most representative of these methods,
and improved methods have been developed. For instance,
topicFM [27] encodes more high-dimensional contextual
information than LoFTR. MatchFormer [28] further enhances
and optimizes LoFTR’s feature extraction.

III. CORRESPONDENCE BETWEEN SWIR AND MWIR
IMAGES FOR REGISTRATION

A. Overview

In this study, we attempt to establish an appropriate
correspondence between IR images captured using different
wavelengths for calibration over several cameras that may
move independently. However, SWIR and MWIR images ex-
hibit different features, as shown in Figure 1, because while
an SWIR image is a reflection image similar to a visible
image, an MWIR image is a thermal image that detects the
IR radiation emitted by objects themselves. Therefore, SWIR
and MWIR images capture different features, resulting in
significantly different visual appearances even when captur-
ing the same scene. These different features can lead to a
decrease in the precision of feature matching. Therefore, this
study proposes a method to reduce the accuracy loss due to
these differences.

B. Comparative Analysis Feature Matching

First, we seek to determine whether detector-based or
detector-free feature matching methods are more effective
for our task. Therefore, we conducted comparative experi-
ments using SiLK, a state-of-the-art detector-based method,
and LoFTR, a detector-free method. We chose these two
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(a) image of a coast. (b) image of a coast.

(c) image of a river. (d) image of a river.

Fig. 1: Examples of MWIR and SWIR images. The Left and
right columns show MWIR and SWIR images, respectively.

TABLE I: SiLK and LoFTR achieves equivalent accuracy
[11] when using HPatches [29] as evaluation data.

Hom. Est. Acc. Hom. Est. AUC MMA
ϵ =
1

ϵ =
3

ϵ =
1

ϵ =
3

ϵ =
1

ϵ =
3

LoFTR (MegaDepth) 0.65 0.87 0.37 0.65 0.64 0.91
SiLK (top-10k) 0.62 0.87 0.4 0.66 0.59 0.71

methods because they demonstrated equivalent registration
performance, as shown in Table I. However, detector-based
methods like SiLK are known to exhibit reduced accuracy
when the features of the two images are different. There-
fore, we examine how much this factor influences feature
matching between SWIR and MWIR images.

C. Preprocessing to Reduce Domain Gap

Additionally, we carried out preprocessing on pairs of
SWIR and MWIR images to make them easier to match
and to thereby improve the matching accuracy. In particular,
we focused on the reversed hues of these image pairs.
This phenomenon becomes particularly prominent at night
in the absence of external light owing to Kirchhoff’s law
represented by the following equation:

r = 1− e, (1)

where r and e represent reflectance and emissivity, respec-
tively. These differences in hues exacerbate the domain gap
and are thought to greatly contribute to the degradation of
matching accuracy.

Therefore, before performing matching, we invert the
intensity of SWIR images to make it closer to that of MWIR
image, thereby reducing the domain gap. Further, because
short-wave IR has less light, SWIR images tend to be more
prone to noise. This could make it difficult to capture texture
features; therefore, we use a Gaussian filter to remove noise
and improve the matching accuracy. Figure 2 shows the result
of applying the inverting intensity and denoising to SWIR
images.

(a) image of a coast. (b) image of a river.

Fig. 2: Results of preprocessing by inverting intensity of and
denoising SWIR images.

Fig. 3: Images before and after performing data augmenta-
tion. Left and right columns show original and augmented
images, respectively.

D. Data Augmentation for Model Robustness

Next, we performed data augmentation on our training
data. By augmenting the data, the model learns to perform
feature matching on pairs of images with different properties.
This helps ensure that the model can adapt to a diverse
range of data. We believe that this will improve the matching
accuracy between images from different domains, such as
SWIR and MWIR images. In particular, the data will be
augmented to replicate different features in SW and MW.
We used the following data augmentation methods:

• Randomly changing the brightness and contrast of an
image

• Inverting the intensity with 50% probability
• Applying Gaussian blur with 50% probability

The brightness and contrast are changed because the bright-
ness and contrast between SWIR and MWIR IR images are
different. The inverting intensity was adopted to correspond
to the phenomenon of hue inversion between SWIR and
MWIR images. The Gaussian blur was adopted as MWIR
images tend to be more blurry compared to SWIR images.
Examples of the data augmentation results are shown in
Figure 3.

IV. EXPERIMENTS

A. Implementation Details

The models used for feature matching are as follows:
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• SiLK (top10-k)
See Table I. It was trained on COCO [30]. Further
details can be found in the Default Setup of [11].

• LoFTR (MegaDepth)
Outdoor model with dual-softmax that was trained on
MegaDepth [31]. Details are provided in [12].

• LoFTR (Augmented)
Model in which training data of LoFTR (MegaDepth)
has been replaced with augmentation data.

B. Evaluation Dataset

The evaluation dataset employed videos captured during
a flight experiment with a helicopter equipped with SWIR
and MWIR sensors [15]. We utilized videos capturing scenes
of forests, urban areas, coasts, rivers, and ships. Each video
has a resolution of 640× 512 and total frame count of 904.
Additionally, the frame rates of the videos captured using
the SWIR and MW IR sensors are identical, and temporal
calibration has been performed.

C. Evaluation Protocol

We conduct registration using feature matching on corre-
sponding frames. Registration begins with feature matching
using the model described in Section IV.A. By using the ob-
tained correspondence, the affine matrix between SWIR and
MWIR images is estimated using OpenCV with RANSAC.
Finally, image registration was performed using the estimated
matrix. To evaluate the feature matching results, the regis-
tration result from the previous frame is used as the ground
truth, because it is difficult to create a ground truth for feature
matching itself. The average pixel error of the four corners
between the registration result of the previous and current
frames is calculated. After the computation of errors, the
success rate of registration was obtained for three thresholds:
10, 30, and 50 pixels.

Generally, registration using feature matching should be
conducted through homography transformation. However, in
this study, the images included in the dataset have only
position aberration owing to the positional relationship of
the cameras used for acquiring SWIR and MWIR images.
Therefore, affine transformation was adopted.

D. Result

1) Comparative Analysis Feature Matching: Table II
shows a comparison between SiLK and LoFTR. This table
indicates that, on average, SiLK is only able to achieve less
than one match per frame, resulting in a registration success
rate of 0%. Therefore, SiLK is not suitable for tasks with
domain gaps, such as the one in this study. These results
corroborate the common belief that detector-based methods
fail in scenarios with domain gaps. By contrast, LoFTR
can successfully perform registration in several frames. This
suggests that detector-free methods may have some level of
resilience to domain gaps. Figures 4 and 5 show examples
of feature matching and affine transformations by LoFTR.

2) Preprocessing to Reduce Domain Gap: Table III shows
the inference result obtained after preprocessing SWIR im-
ages by inverting their intensity and denoising. With LoFTR,
the success rate (considering success as within 10 pixels)
after applying preprocessing was improved by 21% com-
pared to that without applying preprocessing. With SiLK,

TABLE II: Comparison of SiLK and LoFTR. #matches
shows average number of matches per frame.

Model Affine est. Acc #matches
@10px @30px @50px

LoFTR (MegaDepth) 19.60 33.99 44.18 158.73
SiLK (top-10k) 0.00 0.00 0.00 0.94

(a) Between images of a coast.

(b) Between images of a river.

Fig. 4: Examples of feature matching using LoFTR.

(a) Image of a coast. (b) Image of a river.

Fig. 5: Examples of image registration using LoFTR.

TABLE III: Validation of preprocessing.

Model Eval Dataset Affine est. Acc
@10px @30px @50px

LoFTR (MegaDepth) raw 19.60 33.99 44.18
LoFTR (MegaDepth) invert

denoise
41.08 51.60 55.59

SiLK (top-10k) invert
denoise

0.00 0.00 0.00

the success remained 0% after applying preprocessing. These
results demonstrate that applying the preprocessing steps to
align the features of both IR images can improve the success
rate. Therefore, we determined that SiLK is unsuitable for
our task. Figures 6 and 7 show an example of the inference
result obtained using LoFTR after preprocessing the SWIR
image by inverting its intensity and denoising.

3) Data Augmentation for Model Robustness: Table IV
shows the results obtained when using MegaDepth with data
augmentation for training LoFTR. The success rate (consid-
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(a) Between images of a coast.

(b) Between images of a river.

Fig. 6: Examples of image registration using LoFTR for
feature matching after preprocessing the SWIR by inverting
its intensity and denoising.

(a) Image of a coast. (b) Image of a river.

Fig. 7: Examples of image registration using LoFTR for
feature matching after preprocessing the SWIR by inverting
its intensity and denoising.

ering success as within 10 pixels) of LoFTR trained with
augmented MegaDepth was improved by 26% compared
to that of LoFTR trained with simply MegaDepth. This
confirms that expanding the training data to have diverse
hues improves the robustness of feature matching. Figures 8
and 9 show examples of the inference result obtained using
LoFTR trained on augmented MegaDepth.

Table V shows the results obtained by performing match-
ing and registration with LoFTR trained on the augmented
MegaDepth dataset after inverting the intensity and denoising
SWIR inference images. As in Table IV, the model using data
augmentation showed a higher success rate of registration.
Figures 10 and 11 show examples of the inference results ob-
tained by performing matching and registration with LoFTR
trained on the augmented MegaDepth dataset after inverting
the intensity and denoising SWIR inference images.

V. CONCLUSION

In this study, we attempted to perform registration between
SWIR and MWIR images collected in a previous study [15].
Images acquired using SWIR and MWIR sensors have dif-
ferent characteristics, resulting in differences in the accuracy

TABLE IV: Result obtained using LoFTR with and without
augmentation

Model Affine est. Acc
@10px @30px @50px

LoFTR (MegaDepth) 19.60 33.99 44.18
LoFTR (Augmented) 46.84 59.80 61.79

(a) Between image of a coast

(b) Between image of a river

Fig. 8: Examples of feature matching using LoFTR trained
on augmented MegaDepth.

(a) Image of a coast (b) Image of a river

Fig. 9: Examples of image registration using LoFTR trained
on augmented MegaDepth for feature matching.

TABLE V: Result obtained using loftr with and without
augmentation after inverting intensity and denoising

Model Affine est. Acc
@10px @30px @50px

LoFTR (MegaDepth) 41.08 51.60 55.59
LoFTR (Augmented) 57.47 72.64 74.86

of the feature matching applied for registration. To mitigate
this problem, we investigated various image processing and
deep learning methods for improving the feature matching
between SWIR and MWIR images.

Initially, we compared the efficacy of LoFTR and SiLK to
identify whether a detector-based or a detector-free feature
matching method would be more suitable for our task. We
found that LoFTR achieved a registration success rate of 44%
on unprocessed SWIR and MWIR images, whereas SiLK had
a 0% success rate. These results corroborate the conventional
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(a) Between image of a coast.

(b) Between image of a river.

Fig. 10: Examples of feature matching using LoFTR trained
on augmented MegaDepth after preprocessing the SWIR
image by inverting its intensity and denoising.

(a) Image of a coast. (b) Image of a river.

Fig. 11: Examples of image registration using LoFTR trained
on augmented MegaDepth for feature matching after pre-
processing the SWIR image by inverting its intensity and
denoising.

notion that detector-based methods like SiLK are susceptible
to domain gaps, such as changes in lighting conditions.

SWIR and MWIR images exhibit the phenomenon of
reversed black and white attributes according to Kirchhoff’s
law. In addition, SWIR images are prone to noise. Conse-
quently, by inverting the intensity of and denoising SWIR
images before performing feature matching, we were able to
increase the registration success rate to 55%.

Further, we applied data augmentation to diversify the hues
in our training data. As a result, the success rate improved
further to 74%. This result indicates that data augmentation
improves the matching accuracy, thus demonstrating the
efficacy of this approach.
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