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Abstract— Hammerstein spline adaptive filtering (HSAF) is
presented based on normalised version of least mean fourth
(LMF) algorithm. HSAF comprises of a nonlinear memoryless
adaptive lookup table with the spline interpolation function
and linear adaptive filter modified by gradient-based scheme.
LMF is determined by properties of the error term of the
fourth power mean. Normalised version of LMF is applied on
HSAF to get the fast convergence. Experimental results show
that can provide the competitive results to the traditional least
mean square algorithm.

I. INTRODUCTION

Hammerstein spline adaptive filtering (HSAF) composes
of a nonlinear memoryless adaptive lookup table (LUT)
with the spline interpolation function and linear adaptive
finite impulse response (FIR) filter [1]. In general, HSAF
[1] and Wiener-HSAF [2] have been constructed on least
mean square-based (LMS) algorithm that can manage well
performance for the nonlinear system identification. Non-
linear Hammerstein function on SAF has been conducted
against the impulsive noise environment for the nonlinear
system identifications [1]- [4]. In [3], HSAF has been
presented in terms of convergence properties with the good
performance.

Consequently, the spline-based Hammerstein model [4]
has been applied for the nonlinear digital cancellation in
the full-duplex system. In [5], an adaptive normalised least
mean square (NLMS) algorithm has been designed in the
linear adaptive FIR filtering part of HSAF. In [6], HSAF
with the diffusion scheme has been introduced for the
distributed estimation.

According to the least mean fourth (LMF) algorithm,
there are several approaches applied on the stochastic
gradient-based algorithm to get the robust and stability
performance [7]- [9]. In [8], LMF cost function has been
modified on the adaptive affine projection algorithm for
the system identification. Analysis of normalised least
mean fourth (NLMF) has been investigated to protect the
degradation for the adaptive noise cancellation in [9].

The main objective of this paper is to derive the adaptive
NLMF algorithm for HSAF model. Firstly, HSAF model
is described in brief in Section II. Then, proposed NLMF
algorithm for HSAF model will be explained with the
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adaptive averaging step-size method in Section III. Experi-
mental results will be shown in Section IV and conclusion
will be concluded in Section V.

II. HSAF MODEL
Following [1], the HSAF network shown in Fig. 1 that

incorporates with the non-linear and linear parts. Nonlin-
ear part is applied for the Hammerstein-based nonlinear
identification systems [10] with an adaptive LUT with
the spline interpolation function. In which, the linear part
is an adaptive FIR filtering that consists of three basic
elements as the unit-delay element, multiplier and adder.
Delay elements in Fig. 1 are identified by the unit-delay
operator z−1.

Regard to an estimated error e(n) as

ek = dk − yk , (1)

yk = wT
k sk , (2)

where yk is the HSAF output, dk is the desired signal and
wk is the linear tap-weight coefficient. And xk is the input
vector with the length of tap delay M as

wk = [ w0,k w1,k . . . wM−1,k ] , (3)
xk = [ xk xk−1 . . . xk−M+1 ] . (4)

The LUT output sk is given by [11]

sk = ϕ(uk) = uT
k C qi,k , (5)

uk = [u3k, u
2
k, uk, 1]T , (6)

where qik
is the adaptive control points tap-weight coeffi-

cient as

qi,k = [ qi,k qi+1,k qi+2,k qi+3,k ]T . (7)

Local parameter uk and span index i can be evaluated
as [1]

uk =
xk
∆x
−
⌊ xk

∆x

⌋
, (8)

i =
⌊ xk

∆x

⌋
+
Q− 1

2
, (9)

where ∆x is the uniform space between two connected
adaptive control points coefficient. Q is the number of
control points coefficient, and b·c is floor operator.

The B-spline matrix is used for C as [11]

C =
1

6


−1 3 −3 1

3 −6 3 0
−3 0 3 0

1 4 1 0

 . (10)
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Fig. 1. Nonlinear-linear network of HSAF based on AAS-NLMF algo-
rithm.

It is seen that the LUT output sk is correlated with the
local parameter uk and index i of control points tap-weight
coefficient.

III. PROPOSED AAS-NLMF-HSAF ALGORITHM

In this section, the proposed NLMF algorithm with
adaptive averaging step-size method for HSAF (AAS-
NLMF-HSAF) are considered in details.

Following [8] and [12], the cost function based on LMF
algorithm for minimising constraint can be determined as

min
wk

νk =
1

2
(uT

k uk)−1 ξ4 , (11)

subject to ‖ŵk − ŵk−1‖22 ≤ δ2 ,

‖q̂i,k − q̂k−1‖22 ≤ δ2 (12)

where δ denotes the small constant. An estimated error ξk
is given by

ξk = dk − ŵT
k−1 sk . (13)

Then, the proposed adaptive tap-weight coefficient ŵk

and adaptive control points tap-weight coefficient q̂i,k can
be obtained as

ŵk = ŵk−1 − µwk

∂J(ŵk, q̂i,k)

∂ŵk
, (14)

q̂i,k = q̂i,k−1 − µqi,k

∂J(ŵk, q̂i,k)

∂q̂i,k

, (15)

where µwk
and µqi,k are the step-size parameters of tap-

weight coefficients ŵk and q̂i,k, respectively.
Differentiating in (11) by chain rule [11] with respect to

ŵk, we get

∂J(ŵk, q̂i,k)

∂ŵk
= −2 (uT

k uk)−1
{

sk ξ3k
}
. (16)

In that way by considering the gradient of (11) with
respect to q̂i,k, we arrive at

∂J(ŵk, q̂i,k)

∂q̂i,k

= −2 (uT
k uk)−1

{
uk CT ŵk ξ

3
k

}
. (17)

By substituting (16) into (14), the proposed ŵk can be
furnished by

∴ ŵk = ŵk−1 +
µwk

uT
k uk

{
sk ξ3k

}
, (18)

Then, substituting (17) into (15), the proposed q̂i,k can
be illustrated by

∴ q̂i,k = q̂i,k−1 +
µqi,k

uT
k uk

{
uk CT ŵk ξ

3
k

}
, (19)

A. Adaptive Averaging Step-size Algorithms

In order to accelerate the convergence rate, an adaptive
averaging step-size method µwk

of ŵk is implemented with
the help of square of estimated error ξk [13] as

µwk
= βw µwk−1

+ δw ζ
2
k , (20)

ζk = ρ ζk−1 + (1− ρ) ξ2k . (21)

where δw denotes a scaling parameter, 0 < βw < 1 and ρ
is close to 1.

Therefore, an adaptive averaging step-size µqk scheme
of q̂i,k is defined by

µqk = βq µqk−1
+ δq ξ

2
k , (22)

where δq > 0 and 0 < βq < 1.
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TABLE I
SUMMARY OF PROPOSED AAS-NLMF-HSAF ALGORITHM.

For k = 1, 2, . . . , N

1) To arrange the local parameter uk as:

uk = [u3k, u
2
k, uk, 1]T

uk =
xk
∆x
−
⌊ xk

∆x

⌋
2) To organise index i as:

i =
⌊ xk

∆x

⌋
+
Q− 1

2

3) To compute ξk as:

ξk = dk − ŵT
k−1 sk

sk = uT
k C qi,k

4) To determine µwk

µwk
= βw µwk−1

+ δw ζ
2
k

ζk = ρ ζk−1 + (1− ρ) ξ2k

5) To compute µqk

µqk = βq µqk−1
+ δq ξ

2
k

6) To calculate ŵk and q̂i,k

ŵk = ŵk−1 +
µwk

uT
k uk

{
sk ξ3k

}
q̂i,k = q̂i,k−1 +

µqi,k

uT
k uk

{
uk CT ŵk ξ

3
k

}
end

IV. SIMULATION RESULTS

Random processes are used for the computer simula-
tions. In the Wiener system, performance of proposed
NLMF-HSAF algorithm is compared with the traditional
LMS-HSAF [1] over 200 Monte-Carlo trials and 2,000
samples. The input signal xk is circulated by

xk = γ · xk−1 +
√

1− γ2%k , (23)

where %k is a zero mean and unitary variance of white
Gaussian noise. Parameter γ is set to [0.01, 0.99].

The simulation is made up of an unknown Wiener
system by [14]

w0 = [0.6, −0.4, 0.25, −0.15, 0.1] .

Length of 23 points LUT q0 function is orchestrated by
an interpolation as [15]- [16]

q0 ={−2.2,−2,−1.8, . . . ,−1.0,−0.8,−0.91, 0.42,−0.01,

− 0.1, 0.1,−0.15, 0.58, 1.2, 1.0, 1.2, . . . , 2.0, 2.2}

Parameters are used for all algorithms as ∆x = 0.2,
the third degree spline Q = 3 and number of tap-weight
coefficients M = 7. Initial parameters of proposed AAS-
NLMF-HSAF shown in Table I for adaptive control points

TABLE II
SUMMARY OF PROPOSED LMS-HSAF ALGORITHM [1].

For k = 1, 2, . . . , N

1) To arrange the local parameter uk as:

uk = [u3k, u
2
k, uk, 1]T

uk =
xk
∆x
−
⌊ xk

∆x

⌋
2) To organise index i as:

i =
⌊ xk

∆x

⌋
+
Q− 1

2

3) To compute ek as:

ek = dk − wT
k−1 sk

sk = uT
k C qi,k

4) To calculate wk and qi,k

wk = wk−1 + µw sk ek
qi,k = qi,k−1 + µq uk CT wk ek

end

vector q̂i,k and adaptive FIR filter ŵk are as follows:
µq(0) = µw(0) = 7.5 × 10−3, βq = 1 × 10−3, δq =
1 × 10−3, βw = 1 × 10−3, δw = 1 × 10−3, ρ = 0.975, a
signal to noise ratio SNR = 10, 20 dB.

Initial parameters of LMS algorithm for HSAF model
(LMS-HSAF) shown in Table II for adaptive control points
vector qi,k and adaptive FIR filter wk are as follows: δw =
1× 10−3, the fixed step-size parameters µw = µq = 7.5×
10−3 and SNR = 10, 20 dB.

Fig. 2 depicts the curves of various step-size µqk of q̂i,k

and Fig. 3 depicts the curves of step-size µwk
of ŵk. It is

concluded that the proposed adaptive averaging step-size
algorithm for both ŵk and q̂i,k are shown to converge to
their own values.

Comparison of mean square error (MSE) of proposed
algorithms with γ = 0.10, 0.75 in (23) are shown in Fig.
4. MSE trend of proposed NLMF-HSAF and traditional
LMS-HSAF [1] are depicted with the different γ and
SNR=20dB, where the MSE is computed as 10 log(ξ2k) in
dB. It is seen that the MSE curves of proposed HSAF-
NLMS algorithm can implement well performance in com-
parison with the LMS-SAF algorithm at the steady state.

V. CONCLUSIONS

In this paper, the proposed normalised least mean fourth
algorithm based on Hammerstein spline adaptive filtering
(NLMF-HSAF) structure has been orchestrated with the
minimising constraint cost function. The proposed adaptive
nonlinear tap-weight control points coefficient and linear
tap-weight vector have been described to derive with the
help of chain rule. In which, an adaptive averaging step-size
schemes for nonlinear and linear adaptive filters are applied
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Fig. 2. Step-size curves µqk of q̂i,k with γ = 0.10, 0.75 and SNR =
10, 20 dB.

Fig. 3. Step-size curves µwk of ŵk with γ = 0.10, 0.75 and SNR =
10, 20 dB.

to ensure on the choice of fast convergence with low
complexity. In short, proposed NLMF-HSAF algorithm
can conduct the good performance compared with the
traditional LMS-HSAF algorithm.
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