
Vision-Based Gesture Recognition
for Mouse Control

Paolo G. Estavillo, Dale Joshua R. Del Carmen, Rhandley D. Cajote
Electrical and Electronics Engineering Institute

University of the Philippines Diliman
Quezon City, Philippines

{paolo.estavillo, dale.del.carmen, rhandley.cajote}@eee.upd.edu.ph

Abstract—Vision-based hand gesture recognition (VGR) sys-
tems must provide the following functionalities or criteria
to control a computer mouse: (i) hand tracking ability, (ii)
continuous static and dynamic hand gesture recognition, and
(iii) efficient resource management. Our motivation stems from
the fact that only a few research so far has accommodated
all these three criteria. In this paper, we developed a VGR
system that accommodates these three criteria. We propose
an algorithm that simultaneously detects and classifies hand
gestures using RGB images and hand skeletons. To evaluate our
work, we used the IPN dataset which consists of hand gestures
that are suitable for mouse control. Compared to previous
methods on the IPN dataset, our resulting VGR system achieves
better performance in both isolated and continuous hand gesture
recognition (HGR). For continuous HGR, we achieved 61.30%
Levenshtein accuracy.

Index Terms—hand gesture recognition, vision-based hand
gesture recognition, continuous hand gesture recognition

I. INTRODUCTION

Hand gesture recognition (HGR) is a significant area of
research that covers various applications such as sign lan-
guage, visual augmented reality, and medical support. With
the outstanding performance of deep learning in computer
vision in recent years, the use of vision-based hand gesture
recognition (VGR) systems has become widespread [1]. One
benefit of using VGR is that it can enable users to interact
with computers through hand gestures captured by cameras.
By leveraging VGR, we can enhance the way users interact
with digital interfaces, especially in the context of controlling
a computer mouse.

There are two basic functionalities that VGR systems must
provide to control a computer mouse: (i) hand tracking,
and (ii) recognizing continuous static and dynamic hand
gestures. These two items are important so that users can both
change the location of the mouse cursor based on their hand’s
location and also perform a series of natural hand gestures
to execute complex actions. Most of the earlier research has
been able to accommodate either (i) [2], [3] or (ii) [4], [5]
but only a few works so far have accommodated both [6].
Additionally, considering that controlling the mouse cursor is
expected to be a trivial task when using a computer, we also
emphasize a third criterion: (iii) resource efficiency. This is
so that users can use the system alongside other programs on
their computers.

In this work, we have developed a VGR system that fulfills
the three criteria mentioned above so that it can be used
for mouse control. We propose an algorithm, based on [4],
that uses lightweight deep learning models for tracking hand

joint locations and predicting continuous hand gestures. Ad-
ditionally, we employ MediaPipe Hands [7] to extract hand
joint locations that will be later used for both tracking and
predicting hand gestures.

We then evaluated our proposed algorithm on the IPN
Hand dataset [5] which consists of pointing and clicking
gestures, as well as other gestures that can be used to
improve the flexibility of VGR systems. For our deep learning
models, we used R(2+1D)-18 [8] and TD-Net [9] for gesture
detection and gesture classification respectively. Compared to
previous methods evaluated on the IPN dataset, we achieved
the best offline classification accuracies as well as the best
Levenshtein accuracy for continuous and online prediction.

The rest of the paper is organized as follows. In Section II,
we discuss earlier VGR works that were used for mouse con-
trol. Then, in Section III, we discuss our proposed algorithm.
Finally, Section IV discusses the results of our experiments
and Section V discusses future works and concludes the
paper.

II. RELATED WORK

Earlier works in VGR used for mouse control focused
on recognizing static and dynamic hand gestures. The au-
thors in [2] performed background subtraction before feeding
video frames to their 2DCNN network. The authors also
used the hand centroid that was computed using a convex
hull algorithm for tracking the hand location. However, the
method was not able to accommodate dynamic hand gestures
because only static hand gestures, such as various hand
signs, were used. On the other hand, the authors in [3] also
used background subtraction but did not use a deep learning
approach. Instead, static hand gestures were classified based
on the shape of the convex hull and the number of fingers
raised.

In [4], the authors proposed an algorithm for predicting
continuous static and dynamic hand gestures but did not
include hand tracking. The proposed algorithm used a detec-
tor and a classifier simultaneously on a continuous stream
of video frames. This is because the authors focused on
classifying sequences of hand gestures. Thus, a new metric
is introduced, called the Levenshtein accuracy, for evaluating
predicted gesture sequences. The proposed algorithm, how-
ever, needed expensive resources for computation; it used
deep learning models based on RGB frames with different
modalities with large numbers of parameters.

Then, the authors of [5] proposed a benchmark dataset for
continuous HGR called the IPN Hand dataset. Table I shows

TENCON 2023 - 2023 IEEE Region 10 Conference (TENCON)
31 Oct - 3 Nov 2023. Chiang Mai, Thailand

FriMo2V.2

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 1144

the 14 gesture classes with their corresponding labels and
Figure 1 shows some examples of the gestures in the dataset.
The authors used the method proposed in [4] to establish
the state-of-the-art performance on the dataset. However, the
authors used the same deep learning models proposed in [4].
Thus, the benchmark for the cost of computation became
expensive.

TABLE I
GESTURES IN THE IPN DATASET

Label Name Label Name
D0X No gesture G05 Throw left
B0A Pointing with 1 finger G06 Throw right
B0B Pointing with 2 fingers G07 Open twice
G01 Click with 1 finger G08 2 clicks with 1 finger
G02 Click with 2 fingers G09 2 clicks with 2 fingers
G03 Throw up G10 Zoom in
G04 Throw down G11 Zoom out

Fig. 1. Example gestures in the IPN dataset. From top to bottom: Non-
gesture, Pointing with 2 fingers, Click with 1 finger, Throw left, Open Twice,
Zoom in

Finally, the authors in [9] proposed TD-Net, a lightweight
deep learning model that can classify static and dynamic hand
gestures using hand skeletons. The model was based on DD-
Net [10] but the authors added another feature, Normalized
Cartesian Coordinates of Joints (NCJ), to construct TD-Net.
The authors then proposed an algorithm in [6] that can
accommodate hand tracking as well as static and dynamic
hand gestures by using only hand skeletons extracted us-
ing MediaPipe Hands. The proposed algorithm also used a

detector and a classifier; however, it met some limitations
as using skeleton information only could not distinguish
between gesture and non-gesture. Nonetheless, it is worth
noting that the authors achieved comparable performance
on the IPN dataset considering that only lightweight deep
learning models were used.

In our work, we used the ideas presented in these earlier
works to develop a VGR system that can be used for mouse
control. To accommodate hand tracking, we used MediaPipe
Hands [7] to extract hand skeletons for each video frame.
On the other hand, to accommodate continuous static and
dynamic hand gestures, we based our proposed algorithm
on [4] by also using a detector and a classifier simultaneously.
To address the expensive costs of computation, we used a
skeleton classifier TD-Net [9]. Furthermore, to address the
limitations faced in [6], we used a lightweight RGB detector
R(2+1)D-18 [8]. Finally, we evaluated our proposed algo-
rithm on the IPN dataset [5] for both isolated and continuous
HGR tasks to confirm its robustness for mouse control.

III. METHODOLOGY

In this paper, we developed a continuous VGR algorithm
that uses deep neural networks. The algorithm is based on [4]
which uses a sliding window approach and two deep learning
models, one as a gesture detector and the other as a gesture
classifier. The gesture detector uses RGB frames only while
the classifier uses hand skeletons only. The hand skeletons
used by the gesture classifier are computed using MediaPipe
Hands. Both the detector and the classifier are lightweight
as each of them has less than one million parameters.
Figure 2 shows an information flow diagram of the proposed
algorithm.

Fig. 2. Information flow diagram of the proposed algorithm based on [4].
First (1), video frames and hand skeletons are enqueued. Second (2), a
gesture is detected; detector activates classifier. Third (3), classifier outputs
are post-processed; gesture and hand joint locations are identified.

The algorithm starts by processing each incoming video
frame one by one. First, we enqueue the video frame to the
RGB detector’s queue. We also compute the hand skeleton
from the video frame using Mediapipe Hands and enqueue it
to the skeleton classifier’s queue. Second, the RGB detector
processes its queue to detect whether a hand gesture is
currently being performed. If it does not detect a gesture, we

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 1145

simply go to the next iteration and process the next incoming
frame. However, if it detects a gesture, the skeleton classifier
finally processes its queue of hand skeletons to identify the
class of the performed gesture. At this point, we have now
finished one iteration of the algorithm, so we then continue to
the next incoming video frame and repeat the same process.

In comparison to other works, [4], [5] used RGB frames as
input for both the detector and classifier. On the other hand,
the methods in [6] used only hand skeletons for both the
detector and classifier. Our algorithm acts as a compromise
between these earlier methods by having the detector use
RGB frames while the classifier uses hand skeletons instead.

One advantage of using hand skeletons for the classifier is
that it uses less data and thus fewer parameters for classifying
gestures. To classify a gesture, the classifier only uses 32
hand skeletons where each skeleton has twenty-one (21) 3-
dimensional joints. In our work, our classifier only uses 517k
parameters. Additionally, using hand skeletons can overcome
the limitations of using RGB frames for gesture recognition,
such as camera movement and varying lighting conditions.
This is because, as stated in [6], skeleton information is not
affected by color, light factors and environment.

It is worth noting, however, that using only skeleton
information for gesture recognition also has its limitations.
Skeleton information can only distinguish which gesture is
performed given that the subject is performing a gesture.
However, it cannot distinguish between gestures and non-
gestures [6]. Thus, we built the detector such that it uses
RGB frames instead to alleviate this problem.

The next sections will discuss in detail the detector, clas-
sifier, and other processes involved in the algorithm.

A. Sliding Window Approach

The algorithm uses a sliding window approach similar
to [4] where both the detector and the classifier each use a
queue of frames. Following the approach in [4], the detector
queue processes the 8 most recent consecutive frames while
the classifier processes the 32 most recent consecutive frames.
Both queues use a stride of 1 by pushing the most recent
video frame at the front and maintaining their size by popping
the frame at the back.

It is also worth noting that the detector and the classifier
uses different types of data as shown in Figure 2; the
detector uses RGB video frames while the classifier uses
hand skeletons. Thus, the queues used by the detector and
classifier contains different types of data and have different
dimensions.

B. Detector

The main job of the detector is to activate the classifier
if it detects a gesture and to deactivate it otherwise. It is
based from [8] where it uses the ResNet-18 architecture but
internally uses factorized convolutions instead of full 3D
convolutions. Hence the name R(2+1)D-18. This is shown in
Figure 3a. With factorized convolutions, we managed to build
its 18 layers using only 973k parameters. This is because
considering that it continuously processes every video frame,
it must be lightweight [4]. Furthermore, it uses an input
sequence of only eight (8) consecutive RGB frames.

(a) R(2+1)-18 based on [8] (b) TD-Net [9]

Fig. 3. Detector and classifier models

Training Details: We first pretrain the detector with the
Jester dataset [11]. Similar to the approach in [8], we trained
the model with a batch size of 32 videos for 50 epochs.
We used SGD as our optimizer with an initial learning
rate of 1e−2 that is divided by 10 every 10 epochs. For
data augmentation, we followed strategies used in [12]; for
every gesture clip, we randomly selected eight (8) frames by
temporally dividing the gesture clip into 8 equal parts and
then randomly selecting a frame in every part. If the gesture
clip is less than 8 frames, we randomly select the frames to
duplicate. Additionally, for each batch we applied TubeMix
with a probability of 0.5. We then trained the detector on
the IPN dataset [5]. We used the same approach but since
the IPN dataset has significantly fewer gesture instances, we
used 100 epochs and decreased the learning rate every 20
epochs instead.

C. Using MediaPipe Hands To Compute Hand Skeletons

Fig. 4. 21 hand landmarks used for the hand skeleton

For computing the hand skeletons, we used MediaPipe
Hands [7]. Figure 4 shows the twenty-one (21) hand land-
marks that MediaPipe outputs given an RGB image. We set
the detection, tracking, and presence thresholds to a low value
of 15%. This is because setting them to higher values leads to
MediaPipe losing track of the hand during fast hand gestures.
Thus, we set the thresholds to 15% to keep track of the hand
skeleton during fast hand gestures present in the IPN dataset.

Furthermore, if MediaPipe was not able to compute a hand
skeleton for a certain video frame, we use a dummy hand
skeleton that is filled with a value of −1. This is because
MediaPipe outputs twenty-one (21) 3D hand joint coordinates
in the form (x, y, z) where x and y are normalized spatial
coordinates of the hand joint, and z is the estimated depth. If
MediaPipe detects a hand, x and y can lie in the range [0, 1]

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 1146

if the joint is inside the video frame. If the joint is outside
the video frame, however, its x and y can be slightly below
zero or slightly above one. Thus, we use a dummy skeleton
filled with coordinates set to −1 to signify that no hand is
inside the video frame.

D. Classifier

Once the detector activates the classifier, only then will
the classifier process its queue. We used TD-Net [9] as the
classifier’s architecture as shown in Figure 3b. It is based
from its predecessor, DD-Net [10], which consists of the
Joint Collection Distance (JCD) feature, together with the
Slow and Fast Motion features. To build TD-Net, the authors
in [9] added the Normalized Cartesian coordinates of Joints
(NCJ) feature to enrich the spatial information received by
the model. The computation of JCD, and both Slow and Fast
motion features are explained in [10] and the computation
for NCJ is explained in [9].

When building the classifier, we used the same details
proposed in [9] but we set filters equal to 32 instead of 64
and set the input sequence to 32 frames so that the network
only uses 517k parameters.

Training Details: We trained the classifier from scratch
with the hand skeletons extracted from the IPN dataset [5].
We followed the training details mentioned in [10]; we used
Adam as our optimizer with β1 = 0.9 and β2 = 0.999 and
trained the network for 1200 epochs. Instead of using an
annealing learning rate, we used a cosine decaying learning
rate initialized at 1e−3 decayed to 1e−5. For data augmenta-
tion, we used one of the strategies proposed in [12]; for each
gesture clip, we randomly select 32 frames with the same
approach as before and apply StackMix with a probability of
0.5.

E. Post-processing The Classifier’s Output

Instead of taking the raw output of the classifier for each
iteration, we followed the methods proposed in [4] for post-
processing the output probabilities of the classifier. This is
because, as seen in the authors’ experiments, misclassifica-
tions tend to occur at the beginning of a gesture. Thus, we
incorporated the methods proposed by the authors so that
the gestures are classified only after their most discriminative
parts are seen. The post-processing settings were set similarly
to [5], with the mean gesture duration set to 65 frames for
the IPN dataset.

F. Improving The Algorithm

Due to achieving low performance, we modified and at-
tempted to improve the algorithm in Figure 2. In the modified
algorithm, we double both queue lengths and process every
other frame including the most recent frame instead as seen
in Figure 5. This is because the authors of [4] tested their
algorithm against the EgoGesture and nvGesture datasets,
both having a mean gesture duration of 38.4 frames. The
dynamic hand gestures in the IPN dataset, however, have a
mean gesture duration of 65 frames. Thus, we double the
length of the detector and classifier queues and process every
other frame so that the algorithm can adapt to longer gestures
but at the same time, the detector and classifier use input
sequences of the same length as before.

Fig. 5. Improved version of the algorithm in Figure 2. The queues are now
doubled and the models now look at every other frame instead of consecutive
frames.

Furthermore, during our experimentation with the IPN
dataset, we noticed that not all frames are needed to fully
identify a gesture. Given that our detector and classifier
models only use a small number of frames, using consecutive
frames does not show a significant progression in time. This
is because in most cases, the next frame only has a small
difference compared to the current frame. Thus, without
throwing away any input frames, we modified the algorithm
such that the models look at every other frame on their
respective queues instead. This is so that we slightly increase
the difference between two frames at the models’ inputs and
thus, we enrich the temporal information received by our
models.

IV. EXPERIMENTS

A. Isolated HGR

1) Pretraining the Detector With the Jester Dataset: The
Jester dataset is a collection of 148,092 video clips where
each clip depicts one person performing a single hand gesture
in front of a webcam [11]. Each gesture can be one of 27
classes, 25 of which are static or dynamic, while the other two
classes are not labeled as any particular movement. The other
two classes are “No Gesture” and “Doing other things.” The
first presents a user sitting or standing still while the second
is a collection of irrelevant but natural movements such as
stretching, scratching the head, etc.

In our work, we labeled the 25 classes as “Gesture” (Ge)
and the other two as “Non-gesture” (Ng). Additionally, we
did not change how the dataset was split; we followed the
default split ratio of 8:1:1 for the train, test, and validation
splits respectively. As seen in Figure 6, our detector achieved
similar results for the test and validation splits.

2) Results With the IPN Dataset: The IPN dataset consists
of 200 videos where each video depicts one person perform-
ing multiple hand gestures one after another in front of a
webcam. The dataset has a total of 5469 gestures and each
gesture is labeled as one of 14 classes. 13 of these classes

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 1147

(a) Test (b) Validation

Fig. 6. Confusion matrices of the gesture detector on the Jester dataset.
(Left) Test split performance. (Right) Validation split performance.

are either static or dynamic hand gestures while the other
one also represents irrelevant but natural movements similar
to the Jester dataset. We used the same approach and labeled
the 13 gesture classes as “Gesture” and the remaining class
as “Non-gesture.”

Table II and Figure 7 show the resulting precision, recall,
and confusion matrix on the test set of the dataset. Compared
to the 8-frame RGB detectors in [5], ours achieved better
precision and recall with just a small increase on the number
of parameters. One explanation for this is that the data
augmentation techniques that we used, namely TubeMix [12],
was effective for training the model. Since the frames were
randomly selected and the videos were randomly mixed in the
spatial dimension, the detector model was able to generalize
better. Another possible explanation for this is that R(2+1)D
may be better than ResNets for detecting motion. This is
because factorized convolutions might model hand motions
better than full 3D convolutions and that the increase in ReLU
activations help increase the model’s complexity.

TABLE II
COMPARISON WITH PREVIOUS DETECTOR MODELS ON THE TEST SET OF

THE IPN DATASET

Model Modality Params.
Precision

(%)
Recall

(%)
Ng Ge Ng Ge

ResNet-10 [5] RGB 0.895M 60.4 76.4 14.4 96.7
ResNet-10 [5] RGB-Flow 0.908M 87.4 81.5 36.3 98.17
ResNet-10 [5] RGB-Seg 0.908M 73.8 80.9 35.2 95.6
R(2+1)D-18 RGB 0.973M 95.3 91.5 80.3 98.18

Fig. 7. Confusion matrix of our RGB detector on the IPN dataset.

On the other hand, Table III and Figure 8 show the
accuracy and the confusion matrix of our classifier evaluated
on the 13 classes. From Table III, we can see that we have
achieved the best results, having an accuracy of 94.66% while
using only 517k parameters. One explanation for this is that
the data augmentation we employed, namely StackMix [12],
made training more effective; by randomly selecting hand
skeletons and by randomly mixing them in the temporal
dimension, the classifier was able to generalize to the test

data better. This is also because StackMix was not employed
in training the previous models.

TABLE III
COMPARISON WITH PREVIOUS CLASSIFIER MODELS ON THE TEST SET OF

THE IPN DATASET

Model Input Modality Parameters Acc(%)
ResNeXt-101 [5] 32 frames RGB 47.51M 83.59
ResNeXt-101 [5] 32 frames RGB-Flow 47.56M 86.32
ResNeXt-101 [5] 32 frames RGB-Seg 47.56M 84.77
TD-Net [6] — Skeleton 1.88M 84.98
TD-Net 32 frames Skeleton 0.517M 94.66

Fig. 8. Confusion matrix of our skeleton classifier on the IPN dataset.

B. Continuous HGR

For continuous HGR, we evaluated how well the proposed
algorithm predicts gesture sequences. We used the Leven-
shtein accuracy, a metric introduced by [4] and used in the
works of [5] and [6]. In brief, the metric is obtained by
first computing the edit distance between the ground truth
sequence and the predicted sequence. Then, by dividing the
edit distance by the length of the ground truth sequence and
subtracting it to one, we obtain the Levenshtein accuracy.

We evaluated the Levenshtein accuracy of the algorithm
in Figure 2 and its modified version in Figure 5 with the
test videos of the IPN dataset. Table IV shows the results, as
well as the Levenshtein accuracies obtained in [4]–[6]. The
reported values are optimized by varying the early detection
threshold during post-processing. From the table, we can see
that the algorithm only achieved 37.50%. This shows that
better performance on isolated HGR does not result in better
performance in continuous HGR.

On the other hand, the modified algorithm achieved
61.30%. This confirms that we have enriched the temporal
information received by the detector and classifier models.
This was because the modification has enabled the classifier
to have a temporal scope of 64 frames. With 64 frames in
scope, the classifier was able to fully capture the important

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 1148

parts of the dynamic gestures of the IPN dataset which have
a mean duration of 65 frames.

TABLE IV
LEVNSHTEIN ACCURACIES OF DIFFERENT METHODS

Models Modality Lev. Acc(%)
ResNet10+ResNeXt-101 [5] RGB 25.34
ResNet10+ResNeXt-101 [5] RGB-Flow 42.47
ResNet10+ResNeXt-101 [5] RGB-Seg 39.01
TD-Net [6] Skeleton 40.10
R(2+1)D-18+TD-Net RGB + Skeleton 37.50
R(2+1)D-18+TD-Net (Modified) RGB + Skeleton 61.30

We also measured the number of correct predictions made
in each test video to compare the recognition rate shown in
Table V. We used the source code in [5] to obtain results for
their ResNet-10 and ResNeXt-101. From the table, we can
see that the modified algorithm correctly recognized a total
of 769 out of all the 1101 gestures. We can also see that
it has consistently predicted more of each gesture correctly
compared to [5]. It is also worth noting that despite adjusting
the algorithm only to the duration of dynamic gestures in the
IPN dataset (G01-G11), it has also improved its performance
on the static gestures (B0A and B0B).

TABLE V
COMPARISON OF THE RECOGNITION RATES ON THE TEST SET OF THE

IPN DATASET

Label Total
Instances

ResNet-10 +
ResNeXt-101 [5]

Ours
(Modified)

RGB RGB
Flow

RGB
Seg

RGB +
Skeleton

B0A 265 107 186 166 212
B0B 264 103 182 166 220
G01 52 7 16 16 32
G02 52 5 11 10 23
G03 52 10 25 21 34
G04 52 13 29 18 33
G05 52 10 35 29 37
G06 52 10 30 26 36
G07 52 11 21 20 35
G08 52 10 9 10 25
G09 52 4 9 10 28
G10 52 12 24 18 32
G11 52 9 18 20 22
Total
(%) 1101 311

(28.2)
595

(54.0)
530

(48.1)
769

(69.8)

Overall, the results shown in Tables IV and V show the
importance of considering the gesture duration for continuous
HGR. Because each of the classifiers in [5] has a temporal
scope of only 32 frames, they were not able to fully capture
the information for significantly longer gestures such as the
dynamic hand gestures in the IPN dataset which are 65 frames
long on average. Consequently, the algorithm used in [5] and
our straightforward implementation of it using hand skeletons
in Figure 2 had difficulty in predicting gestures for continuous
HGR.

V. CONCLUSION

In this paper, we introduced a VGR system based on [4]
that accommodates hand location tracking, static and dynamic
hand gestures, while using efficient and lightweight deep
learning models for mouse control. Our experiments on the
IPN dataset have confirmed that using RGB together with

skeleton information is an efficient way of improving the
algorithm in [4].

Our experiments on isolated HGR have shown that using
factorized convolutions is a robust way for detecting hand
motions. Additionally, we found out that using the data
augmentation techniques proposed in VideoMix [12] were
helpful for training even for skeleton classification.

Furthermore, our experiments have shown that having bet-
ter performance in isolated HGR alone does not automatically
result in better performance in continuous HGR. Despite
the models achieving better classification performance, the
algorithm significantly improved only when it was adopted
to longer gestures by using frame skipping with longer queue
lengths. Thus, future implementations must provide a way for
dealing with varying gesture durations to bring significant
improvements for continuous HGR.

Overall, the proposed algorithm still has room for improve-
ment. Other modalities such as different color spaces, like
HSV and CMYK, can be explored to improve classification.
In addition to dealing with gesture durations, there are
still major challenges for continuous HGR that are present,
such as gesture spotting, segmentation, and extracting more
meaningful hand gesture features [1]. Further research must
address these challenges so that better VGR systems can be
developed.

REFERENCES

[1] D. Sarma and M. Bhuyan, “Methods, Databases and Recent Advance-
ment of Vision-Based Hand Gesture Recognition for HCI Systems: A
Review,” SN Computer Science, vol. 2, 11 2021.

[2] M. Ranawat, M. Rajadhyaksha, N. Lakhani, and R. Shankarmani,
“Hand Gesture Recognition Based Virtual Mouse Events,” in 2021 2nd
International Conference for Emerging Technology (INCET), 2021, pp.
1–4.

[3] V. V. Reddy, T. Dhyanchand, G. V. Krishna, and S. Maheshwaram,
“Virtual mouse control using colored finger tips and hand gesture
recognition,” in 2020 IEEE-HYDCON, 2020, pp. 1–5.

[4] O. Kopuklu, A. Gunduz, N. Kose, and G. Rigoll, “Real-time hand ges-
ture detection and classification using convolutional neural networks,”
in 2019 14th IEEE International Conference on Automatic Face and
Gesture Recognition (FG 2019), 2019, pp. 1–8.

[5] G. Benitez-Garcia, J. Olivares-Mercado, G. Sanchez-Perez, and
K. Yanai, “IPN Hand: A Video Dataset and Benchmark for Real-
Time Continuous Hand Gesture Recognition,” in 25th International
Conference on Pattern Recognition, ICPR 2020, Milan, Italy, Jan 10–
15, 2021. IEEE, 2021, pp. 1–8.

[6] T.-T. Nguyen, N.-C. Nguyen, D.-K. Ngo, V.-L. Phan, M.-H. Pham,
D.-A. Nguyen, M.-H. Doan, and T.-L. Le, “A continuous real-time
hand gesture recognition method based on skeleton,” in 2022 11th
International Conference on Control, Automation and Information
Sciences (ICCAIS), 2022, pp. 273–278.

[7] F. Zhang, V. Bazarevsky, A. Vakunov, A. Tkachenka, G. Sung, C.-L.
Chang, and M. Grundmann, “Mediapipe hands: On-device real-time
hand tracking,” 2020.

[8] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri,
“A closer look at spatiotemporal convolutions for action recognition,”
2018.

[9] T.-T. Nguyen, D.-T. Pham, H. Vu, and T.-L. Le, “A robust
and efficient method for skeleton-based human action recognition
and its application for cross-dataset evaluation,” IET Computer
Vision, vol. 16, no. 8, pp. 709–726, 2022. [Online]. Available:
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/cvi2.12119

[10] F. Yang, S. Sakti, Y. Wu, and S. Nakamura, “Make skeleton-based
action recognition model smaller, faster and better,” in Proceedings of
the ACM multimedia asia, 2019, pp. 1–6.

[11] J. Materzynska, G. Berger, I. Bax, and R. Memisevic, “The Jester
Dataset: A Large-Scale Video Dataset of Human Gestures,” in 2019
IEEE/CVF International Conference on Computer Vision Workshop
(ICCVW), 2019, pp. 2874–2882.

[12] S. Yun, S. J. Oh, B. Heo, D. Han, and J. Kim, “Videomix: Rethinking
data augmentation for video classification,” 2020.

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 1149

