
Video Dataset Labeling using Active Learning
with Applications in Vehicle Classification and

Traffic Flow Rate Measurement
Adonais Ray Maclang∗, Miguel Lorenzo Orante†, Rennuel Don Salvador‡,

Dale Joshua del Carmen §, and Rhandley D. Cajote ¶

Electrical and Electronics Engineering Institute
University of the Philippines–Diliman

Quezon City, Philippines
∗adonais.ray.maclang@eee.upd.edu.ph, †miguel.lorenzo.orante@eee.upd.edu.ph, ‡rennuel.don.salvador@eee.upd.edu.ph,

§dale.del.carmen@eee.upd.edu.ph, ¶ rhandley.cajote@eee.upd.edu.ph

Abstract—Intelligent Transportation Systems (ITS) offer a
means to increase efficiency in road management, safety, and
traffic enforcement. The Philippines, particularly Metro Manila,
is notorious for its high levels of traffic congestion result in
significant economic loss. It is possible to accumulate large
amounts of traffic video data by installing traffic cameras
but the manual preparation of such custom datasets for ITS
applications is taxing and laborious. In this paper, we develop
an algorithm for vehicle detection, classification, and flow rate
measurement algorithm for ITS applications using YOLOv7
and a tracker trained on a custom dataset provided by the UP
National Center for Transportation Studies (NCTS) augmented
with active learning algorithm. Its detection, classification,
and tracking performance were compared to that of a model
trained without using active learning. The results indicate that
using uncertainty-based active learning algorithm is effective
in improving the model’s tracking capability. The best results
from the active learning models with the tracker was able to
achieve a higher HOTA value of 67.423 vs 67.355 (+0.068%)
for the first evaluation, and 71.652 vs 70.614 (1.038%) for the
second evaluation on the NCTS tracking evaluation sets. For
a specific sequence in DETRAC, the improvement is 69.842
vs 69.84 (+0.002%). At the third cycle of training, the active
learning model counts better with a total count of 98 vs 100
from a true count of 91.

Index Terms—active learning, detection, classification, track-
ing, flow rate

I. INTRODUCTION

Transportation has a vital role in the economic develop-
ment of every country as it facilitates the movement of goods
and people from one place to another. The development
of efficient transportation systems has a direct impact on
the growth and progress of a nation, making it crucial for
governments to invest in this sector. Inefficient transportation
systems have caused huge opportunity costs, decreased levels
of safety for vehicles and pedestrians alike, and overall
degradation of the quality of life [1], negatively affecting the
country’s economy and social development. These issues are
evident in urbanized areas such as Metro Manila. Studies in
2018 and 2022 have shown that Manila has a 43% congestion
level and that, on average, Filipinos waste around four days
per year in its traffic jams, equivalent to 3.5 billion pesos of
loss in productivity [2], [3].

Intelligent Transportation Systems (ITS) have the potential
to make traffic systems safer and more efficient by in-

corporating modern information and electronic technologies
in the management of traffic elements. ITS that is design
carefully can provide real-time traffic information to drivers
and commuters alike, allowing them to choose alternative
routes and reduce congestion. With recent advancements
in both hardware and software technologies, video-based
detection systems have become an essential component in
ITS and can therefore play a critical role in delivering
data for road planning and traffic management applications
such as automated incident detection, automated red light
reinforcement, more efficient emergency response, etc. [4].

Deep learning approaches in ITS have consistently pro-
duced better results than existing statistical and analytical
techniques [5] with Convolutional Neural Networks (CNN)
being the most commonly used in visual recognition tasks
(detection and tracking) [5]. These systems having been
designed to learn higher features in image samples by
exploiting patterns in adjacent pixels [6]. YOLO utilizes a
single convolutional network that produces predictions for
multiple objects in bounding boxes and at the same time
classifies them. [7]. The current version of YOLOv7 at the
time of this writing, surpasses all known detectors in speed
and accuracy, from 5 FPS to 160 FPS, and has the highest
accuracy among all known real-time detectors, with 56.8%
AP at 30 frames per second [8]. This makes it an ideal model
for applications that require both high accuracy and low
latency. The implementation of these technologies, however,
requires a significant amount of video data to be labels
and annotated, which can be a challenge for transportation
agencies that lack the necessary trained personnel to do this.

In order to develop ITS algorithms applicable in the
Philippines, a custom dataset that covers the country’s wide
variety of vehicles under different road conditions is ideal
if not necessary. But this requires a labor-intensive human-
in-the-loop system to process all the relevant information in
the dataset and to ensure the accuracy of the information
derived from it. In the traditional passive learning method,
large amounts of labeled data must be produced to enable
supervised learning of a model. Active learning algorithms
try to maximize the efficiency of labeling data by choosing
the data samples that are most informative for the model
to learn from. This approach can significantly reduce the
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amount of labeled data needed, making it more efficient and
cost-effective while being able to produce results comparable
to those produced by traditional supervised learning methods.

II. METHODOLOGY

A. Dataset Preprocessing and Annotation

Fig. 1. Sample images from the NCTS dataset

Researchers at the University of the Philippines National
Center for Transportation Studies (UP-NCTS) have collected
various video data in key areas of Metro Manila for the
purposes of improving traffic planning, management, and
policy-making. We will refer to this video data collected by
UP-NCTS in this paper as the NCTS dataset. This includes
the handheld camera and CCTV videos taken from the city
of Santa Rosa, Bonny Serrano, and Bicutan Interchange,
as could be seen in Figure 1. The NCTS dataset though
extensive is still unlabeled and not publicly available. The
resolution of the images vary from 640 x 480, 720 x 480,
1280 x 720, and 2224 x 108 for the handcam videos, while
the CCTV videos has a resolution of 1920 x 1080. Initially
we will take 20,000 unlabeled images (video frames) from
this dataset, label them and train our models using active
learning.

To create a base model that can better estimate the
uncertainty of the unlabeled data by lessening the number
of unfamiliar instances, the model was trained using data
from different locations and varying lighting conditions, such
as sunny, cloudy, and dawn. A total of 1,000 frames were
manually labeled initially, and 500 frames were added to
each learning cycle until 2,500 frames had been labeled
for the active learning dataset. For the random sampling
dataset, the initial 1,000 frames without active learning yet
will be reused, and an additional 1,500 frames was randomly
sampled for a total of 2,500 images.

Computer Vision Annotation Tool (CVAT) was used to
label the images. CVAT supports labeling in different formats
like YOLO, COCO, KITTI, and others. This makes it easier
to annotate and convert formats as needed.

B. Active Learning

Here we discuss the active learning algorithm that was
implemented alongside the model training. Its performance in
vehicle detection and classification were tested and evaluated.
A summary of this is shown in Figure 2.

To determine the informativeness of an unlabeled sample x
containing multiple detections, [9] defines a basic uncertainty

sampling strategy using the least confidence metric vLC

given as,

vLC(x) = argmax
x

1− Pθ(ŷ|x), (1)

where ŷ = argmaxx Pθ(y|x) the prediction with the
highest probability under model θ. With this metric, a simple
and efficient scoring system proposed by [10] may be used.
In this system, aggregation methods namely sun (Sum),
average (Avg), and maximum (Max) are devised to score a
whole image. Avg takes the average or the sum of the metric
over the number of total detections in the image sample.
Taking the average may be biased towards images with many
detections D [11]; however, this will make the score more
comparable between image samples.

vAvg(x) =
1

|D|
∑
iϵD

vLC(xi) (2)

The study by [10] proposed a method of handling the
class imbalance in the dataset that may cause a bias towards
the majority class and issues in the model’s classification
accuracy. Detection scores vLC(x) were weighted before
aggregation according to the formula,

wc =
#instances+#classes

#instancesc + 1
(3)

Where c is the predicted class. This optimization tries to
counter the imbalance by putting more weight into instances
of the underrepresented classes.

The YOLOv7 model was retrained after three active learn-
ing cycles and evaluated to get its performance metrics and
the tracking capability of different variations of the model
was tested. The different models were integrated with a
tracker using BYTETrack [12] to be able to perform vehicle
tracking. The output from the YOLOv7 and BYTETrack
network was used to compute the flow rate. This model
enhanced by active learning will be compared with the
model trained on random sampling. The results from this
comparison will provide insights into the effectiveness of
active learning in improving the accuracy of vehicle tracking
and flow rate computation. Additionally, the findings could
have practical implications for traffic management and urban
planning.

The active learning method used is an uncertainty-based
black-box method that will only be making use of the
classification confidence scores from the YOLOv7 model
inferences. Once the base model has been trained with the
initial 1000 images, confidence scores from the remaining
19,000 images from the unlabeled image pool will be taken
and ranked using the simple least confidence metric found
in (1). Using the Average (Avg) aggregation method in (2)
to rank the unlabeled images, the top-500 highest-scoring
images were then used and manually labeled again to ensure
that the labels are correct, with the lower confidence score
starting at 0.001 per detection. It is important to note that
there will also be a class imbalance due to the disproportion-
ate distribution of vehicles in the dataset. Weights calculated
in (3) were multiplied to each vehicle detection per image
to try to address this issue.
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Fig. 2. Overview of the Active Learning Algorithm.

C. YOLOv7 Training and Testing

A total of 2500 images was used to train different models
on the active learning algorithm and on randomly sampled
data while 1,000 images will be used for testing. The mean
average precision (mAP) of the model from each active
learning cycle will be compared to verify its improvement. A
separate set containing 500 images from the Tagapo CCTV
is used to test the model’s performance in a location not
included in its training data. The resolution of the images
will be scaled down to 640 x 640 as it’s the default image
size used for the YOLOv7 model.

D. Vehicle Tracking

ByteTrack [12] is a multiple object tracker that uses a
simple, effective, and generic association method that tracks
by associating every detection box instead of only the high-
scoring ones, which improves the tracking performance. The
similarities of low-score detection boxes are utilized with
tracklets to recover the object detections and filter out the
background detections. This makes it highly effective in
crowded scenes where objects are closely packed together
and overlapping. The tracker ranks first on benchmarks such
as MOT17 [17] and MOT20 [18] while having the highest
running speed among the trackers on the leaderboard as of
this writing.

ByteTrack is used as the tracking algorithm with the
YOLOv7 model trained in the NCTS dataset. The flow rate
was obtained using the formula in (4) with the information
obtained from the YOLOv7 and ByteTrack network, utilizing
the number of vehicles it has counted. The algorithm uses the
maximum and minimum ID set by the tracker for each frame
for a specific interval. This is multiplied by the framerate of
the video sample to get the flow rate in vehicles/sec.

flow rate =
IDmax − IDmin + 1

frame interval
· fps (4)

To measure and better visualize the amount of traffic, the
average amount of time vehicles stay within the video frame
k can be measured as in (5). For each vehicle tracked by the
system with an ID, it will count for the number of frames
that ID was present in the system, and this value will be
summed together with all vehicles counted. The models will
be compared to see how much active learning can improve
the overall performance of the system compared with random
sampling.

k =

∑N
i=1(vehicle duration in frames)i
total number of vehicles(N)

(5)

E. Evaluation

The performance of YOLOv7 models will be evaluated
by comparing its mAP with the test set of 1,000 images,
as well as the separate set of 500 images from Tagapo to
see its performance in an unfamiliar environment. Together
with ByteTrack, the tracking performance will be primarily
evaluated on the HOTA metric, as well as the CLEAR-MOT
and IDF1 metrics [13]. The counting will also be measured
to see how it deviates from the true count to see the accuracy
of flow rate measurement since the flow rate is simply the
counting of vehicles per given time segment.

Higher Order Tracking Accuracy (HOTA) is a multiple
object tracking evaluation metric that gives equal importance
to detection and association accuracy, measuring how well
the trajectories of matching detections align while penalizing
detections that do not match. The identity metric IDF1
focuses on measuring association accuracy rather than de-
tection accuracy by combining ID-Precision and ID-Recall.
Lastly, the CLEAR-MOT metrics, Multiple Object Tracking
Precision (MOTP) and Accuracy (MOTA), are overall per-
formance measures showing how well the locations of the
objects are estimated (MOTP) and how many mistakes the
system made in terms of false negatives, false positives, and
ID mismatches (MOTA).

III. RESULTS AND DISCUSSION

The training and testing of the YOLOv7 models were done
on a machine with Ryzen 5 4600H and GTX 1650 with 16GB
of RAM. This was our primary system where the evaluation
on tracking was also performed, achieving almost 15 fps
with a resolution of 1600 x 700 on our evaluation video
for tracking. Another machine with Intel Core i7-8750H
and GTX 1050 with 8GB of RAM was also used to help
in training for the third cycle of both the active learning
and random sampling model. The evaluation of the whole
system is done using TrackEval [14]. TrackEval is a codebase
for different tracking evaluation metrics, which include the
HOTA, CLEARMOT, and Identity metrics, that provides
support on a number of different tracking benchmarks.

The training was done using the default parameter settings
of the YOLOv7 model, which can be found in the YOLOv7
repository [8] from the directory ”yolov7/data/scratch.p5
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yaml” containing the values of the 30 parameters used in
training. The models were trained for 150 epochs instead of
the default value of 300 epochs for faster training.

In this section, the models trained with the help of the
active learning algorithm will be denoted as A1 (first cycle),
A2 (second cycle), and A3 (third cycle). Similarly, the
models generated and trained using randomly sampled data
will be denoted as R1, R2, and R3.

A. Active Learning Algorithm

Fig. 3. Sample images picked by the Active Learning Algorithm

Figure 3 shows some of the images picked by the active
learning algorithm. It can be observed that the majority of
the images are of dark, rainy, or occluded conditions. This
suggests that the active learning algorithm is able to identify
challenging scenarios where the model may struggle and
select images that will improve its performance in those
conditions.

In table I, it can also be observed how the algorithm tries
to prioritize images containing underrepresented classes such
as buses and trucks because of the implemented weighting
system. This is shown in the table below, where the distribu-
tion of classes in the random sampling does not differ much
from the base model, while the active learning algorithm
reduces the number of cars and motorcycles while increasing
the number of instances for other classes.

TABLE I
COMPARISON OF THE CLASS DISTRIBUTION BETWEEN MODELS

Model bus car jeep motor trike truck van
Base 3.59 35.6 6.92 26.74 11.39 7.51 8.24
R1 3.48 36.16 6.82 25.84 11.65 7.68 8.36
R2 3.53 35.77 6.84 25.99 11.91 7.59 8.38
R3 3.51 35.6 6.88 25.86 12.03 7.58 8.53
A1 3.72 33.72 6.93 25.21 11.95 9.44 9.03
A2 3.65 32.97 6.73 24.51 12.67 10.5 8.98
A3 4.35 31.14 7.16 20.97 16.24 11.33 8.80

B. YOLOv7 Detection and Classification

As can be observed in Table II, the YOLOv7 models can
be seen improving their mAP when the number of images
increases. In here, R0 and A0 are the models trained only on
the first 500-image set of each method. Looking from 100
images to 1000 images of the base model, the mAP increases
as well and the active learning algorithm when having 500
images total (adding 250 images picked by the active learning
algorithm to the previous 250 images) has a mAP advantage

TABLE II
TRAINING RESULTS OF DIFFERENT MODELS ON NCTS DATASET

Model mAP
100 images 0.509
250 images 0.605

Base 0.673
R0 0.643
R1 0.673
R2 0.677
R3 0.682
A0 0.658
A1 0.678
A2 0.667
A3 0.675

of 1.5% (65.8% vs 64.3%) to see the effectiveness of the
active learning even at an earlier stage. After 1000 images,
the mAP improvements become smaller. The mAP on the
first cycle of active learning improves but lowers on the
second and third cycles. Random sampling improves the
map on the second and third cycles but has no changes
at the first cycle, having slightly lower mAP@0.5 (84.6
vs 85.5) compared to the base model. One of the reasons
for slight decline in performance during active learning on
later parts is that the 2nd and 3rd cycle had 21.1% and
18.4% of its training set have background images, unlike
the 1st cycle having 12.4% and the random sampling cycles
less than 10%. Training YOLO models recommends having
background images limited to about 10% of the training set.
The decrease in mAP may also be due to having lesser
amounts of training data, where during the third cycle of
training there are 31,781 detections for random sampling and
only 19,002 instances for the active learning.

TABLE III
EVALUATION OF DIFFERENT MODELS ON TAGAPO TEST SET

Model mAP
100 images 0.323
250 images 0.364

Base 0.436
R0 0.425
R1 0.456
R2 0.477
R3 0.474
A0 0.447
A1 0.528
A2 0.466
A3 0.441

As in Table III, when using the Tagapo test set, a similar
trend is shown, but the A1 model had the best mAP out of
them all. This shows that the first active learning cycle of
the model gives the biggest advantage compared to random
sampling with a starting low confidence score of 0.001 for
a different environment as well as a similar environment
from the first test set. The second and third cycle has the
random sampling having a slight advantage compared to
active learning.

For testing the vehicle classification, a confusion matrix is
generated. For the base model, the results show that vehicles
can be classified accurately, where the true positive ranges
from 0.63 to 0.88, and that from backgrounds, there can be
false positives of cars and motorcycles. False negatives can
often occur with buses and tricycles, where the model thinks
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Fig. 4. Confusion Matrix for the Base Model

of them as a background when they should have been labeled.
There are no significant changes from the models in terms
of the confusion matrix.

C. YOLOv7 + ByteTrack Testing

TABLE IV
COMPARISON OF TRACKING RESULTS BETWEEN MODELS

Model HOTA MOTA MOTP IDF1 Count True
Count

A1 66.254 79.360 79.736 89.881 17 17
A2 66.556 76.066 79.378 88.310 17 17
A3 67.423 78.585 79.473 89.329 17 17

Base 66.127 77.907 78.962 87.837 18 17
R1 65.725 79.264 78.456 88.456 18 17
R2 65.453 79.651 78.519 88.794 18 17
R3 67.355 78.973 78.934 89.701 17 17

In Table IV, the tracking threshold used was 0.8 for the
comparison of models, as it yielded the best HOTA value
using the base model by tracking only the car class for
simpler evaluation. The first two cycles of active learning
improve the HOTA compared to random sampling while
worsening for the random sampling. In the third cycle,
however, random sampling improves over previous cycles,
but the active learning algorithm still yields the best result
for the HOTA value as shown by the increasing trend from
each cycle. The random model took until the third cycle
before it can match the active learning models. This shows
that flowrate can be accurate with no errors when the active
learning models are used, while the random sampling models
can deviate by up to 5.88% and needs more images to be
more accurate in counting.

TABLE V
DETRAC EVALUATION IN [15]

Det
Thres

Recall Prec FP FN IDs MOTA MOTP

0.3 73.362 93.812 291 1602 2 68.490 74.559
0.7 59.628 95.985 150 2428 0 57.133 75.019
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Comparing the system to a similar paper for ITS in the
Philippines using YOLOv4 and a KLT Tracker, the sequence
MVI 20011 of UA-DETRAC dataset [15] in Figure V was
used to show the difference between their performance in
terms of the CLEAR-MOT metrics, at least between the
MOTA and MOTP metrics common between them [16].

TABLE VI
COMPARISON OF TRACKING RESULTS BETWEEN MODELS ON DETRAC

Model HOTA MOTA MOTP IDF1 Count True
Count

A1 69.842 80.732 79.992 90.124 54 49
A2 69.740 79.853 79.998 89.715 54 49
A3 68.952 79.824 79.904 89.561 53 49

Base 68.636 77.144 79.718 88.798 55 49
R1 69.465 78.435 79.890 89.518 57 49
R2 67.598 78.066 79.311 88.586 54 49
R3 69.84 80.703 79.442 90.122 56 49

The system developed in this paper as seen in Table VI is
able to achieve a better tracking performance, with its best
MOTA higher at 80.732 (vs 68.49), and best MOTP of 79.998
(vs 75.019) which shows how a better network can improve
overall performance. Only cars have been tracked in both
evaluations so they can be compared directly. Furthermore,
the flow rate and counting may deviate from the true count
by 8.2% or up to 10.2% (from active learning) or 16.3%
(from random sampling) depending on the final model used.
Although the third cycle of the random sampling model had
the highest mAP from our testing for the NCTS dataset, it
still performed worse in terms of counting, with the first cycle
of the random sampling model being the worst. The increased
error rate can be attributed to the different environment used
for evaluation, unlike the NCTS testing set where the error
rate can go as low as 5.85% or none at all. A screenshot with
labels from the sequence MVI 20011 of the UA-DETRAC
dataset is shown below, where only the region of interest is
being evaluated excluding areas like the parked cars.

Fig. 5. MVI 20011 sample frame

Shown in figure 6 is a sample of the traffic flow rate in
action, where the number of vehicles per second is being
measured. This value measures how many new vehicles enter
the frame per second. The metric k is also shown to measure
how much traffic is currently present in terms of frames; the
accuracy of this value is affected by how accurate tracking
is, and missed IDs on some frames can affect this even if
the same ID re-appear on the same vehicle.

Overall, the results show that active learning is effective
in improving the tracking performance of the system. The
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Fig. 6. Sample of Flow Rate and K measurement

active learning algorithm tends to pick rainy or low light
conditions more as expected, but it also comes with the
addition of many background images, and these background
images at later cycles may no longer be as helpful, unlike
the first cycle of active learning where there was a noticeable
mAP improvement over random sampling. There also tend
to be fewer instances of training data for the active learning
algorithm in an attempt to balance these classes because the
class distribution of the NCTS dataset is biased toward cars.
Despite being weaker in terms of mAP at later cycles during
the detection stage, the active learning models still perform
better together with the tracker combined as compared to
the random sampling models as shown during the tracking
evaluation.

IV. CONCLUSION

An object detection model that is able to detect, classify
and track vehicles was developed with the help of an active
learning algorithm. The effectiveness of the active learning
algorithm in the application of ITS is compared by using a
model trained on randomly sampled data. After three random
cycles and three active learning cycles, it was shown that
despite being slightly less accurate at later cycles during the
detection stage, the active learning models were able to track
the vehicles better compared to the random sampling models.
The lack of significant difference between the models in
their detection accuracy may be attributed to the inherent
imbalanced class distribution, excessive vehicle variation per
class, and occlusions in the NCTS dataset that may have
limited the model’s ability to generalize.

In the future, it is highly recommended to explore more
complex active learning algorithms as well as other object de-
tection/classification methods. The implementation of Region
of Interest in training may also be investigated for potential
improvements in the performance of the model.
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