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Abstract—Exceptional advancements in various computer
vision tasks, such as identifying and categorizing objects, have
been realized through the use of deep learning models, with a
particular emphasis on convolutional neural networks (CNNs).
Yet, while these models deliver outstanding results, they remain
vulnerable to adversarial examples, thereby raising questions
about their safety and dependability. In this paper, we investi-
gate the influence of the image characteristics on the efficacy of
adversarial patch attack against an image classifier model. We
analyzed such characteristics in the frequency domain, where
the frequencies indicate the periodicity and information density
that contribute to the efficacy of adversarial patches. Our
results showed that low-frequency components had significant
contribution to the effectiveness of adversarial patch attacks.

Index Terms—Adversarial Patch, Fourier Analysis, Convolu-
tional Neural Networks, Adversarial Examples

I. INTRODUCTION

Exceptional advancements in various computer vision
tasks, such as identifying and categorizing objects, have been
realized through the use of deep learning models, with a par-
ticular emphasis on convolutional neural networks (CNNs).
However, despite their impressive performance, these mod-
els are susceptible to adversarial attacks, posing security
and reliability concerns. Among various attack strategies,
adversarial patches have gained significant attention due to
their practical applicability and effectiveness in fooling deep
learning models.

While previous studies have primarily focused on the
design and evaluation of adversarial patches themselves, the
impact of the image characteristics in which they are applied
remains under-explored. By providing a comprehensive anal-
ysis of this relationship, we aim to deepen the understanding
of adversarial patch effectiveness and contribute to the de-
velopment of more robust deep learning systems.

II. RELATED WORKS

Deep learning represents a distinct category within ma-
chine learning methodologies, empowering intelligent sys-
tems to discern high-level semantics and vital patterns from
extensive data sets. Traditional machine learning methods
often faced difficulties in feature extraction due to their
incapacity to manage high-dimensional input data [1] and
computational limitations [2]. On the other hand, Convo-
lutional Neural Networks (CNNs), a specific type of deep
learning, managed to overcome these hurdles by defining

complex associations among a multitude of fundamental
visual elements using artificial neurons. These connections
between edges and distinct structural features are traced
through several hidden layers. Therefore, the efficacy of Con-
volutional Neural Networks (CNNs) deep learning systems
sees a significant boost when provided with ample training
data.

Neural networks are built upon intricate networks of
interrelations among numerous layers of neural units. Every
layer consists of several artificial neurons that employ an
activation function to transform high-dimensional input into
one or more output values. A conventional neural network
can be expressed mathematically in the following manner:

g(X) = g(k)(· · · g(2)(g(1)(X))) (1)

In this equation, X signifies an input image, while g(i)

represents a function associated with the ith layer of the
network, where i = 1,2,.... k.

Models such as LeNet[3], AlexNet[4], VGG[5],
ResNet[6], and Inception[7][8][9] find frequent application
in deep learning tasks associated with computer vision.
Often becoming the focus of adversarial examples, these
models are commonly examined using prominent datasets in
computer vision such as MNIST, CIFAR-10, and ImageNet.
Handwritten digits form the collection of MNIST [10], while
CIFAR-10 and ImageNet are employed for classification
tasks. With its 60,000 images in 10 categories [11], CIFAR
serves as a rich resource, while ImageNet’s 14,196,122
images span across 1,000 classes [12]. Given ImageNet’s
sheer volume, studies on adversarial examples are often
restricted to its smaller subsets.

The discussion around adversarial examples in machine
learning has persisted for more than ten years, frequently re-
volving around systems that use handcrafted characteristics,
such as intrusion detection and spam filters. The concept
of adversarial examples as a face-off between adversaries
and classifiers was introduced by Dalvi et al. [13]. Later,
the L-BFGS method for creating adversarial examples was
proposed by Szegedy et al. [14], but the approach was viewed
as being computationally demanding and not practical due
to its reliance on linear search. A more efficient alternative,
the Fast Gradient Sign Method (FGSM), was put forward
by Goodfellow et al. [15]. They proposed adding a gradient
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sign of the cost function to each pixel. This process can be
expressed as:

η = ϵsign (∇XJ (θ,X, ŷ)) (2)

In this equation, η signifies the perturbation’s extent, calcu-
lated through gradients obtained during the back-propagation
process. Using an original image X, the manipulated ad-
versarial example X′ can be produced by introducing the
perturbation η to the image: X′ = X+ η.

[16] introduced the notion of Adversarial patch attacks
to create universal adversarial examples suitable for practi-
cal real-world applications, particularly in image classifiers.
They crafted these patches as robust, universal adversarial
samples which could be physically adhered to any real-
world environment using printable materials. This, in turn,
caused classifiers to make erroneous predictions for any
target class. Image classifiers are typically programmed to
concentrate on the most prominent patterns within an image.
Capitalizing on this aspect, adversarial patches infuse real-
world input images with smaller, yet considerably more
noticeable patterns.

[17] primarily investigated adversarial examples, demon-
strated that a model can maintain high accuracy when utiliz-
ing only low-frequency information in the Fourier domain.
This finding is relevant to our work [18]. As shown in
Fig. 1, we have discovered that image classes with more
low-frequency information, such as the Monarch butterfly,
are more resistant to adversarial patch attacks compared to
image classes with background-like features, like Valleys and
Forelands.

Fig. 1: Attack success rate (winrate) of the patch against
different types of classes. Monarch class images are much
harder to fool than Valley class

[19] aimed to counter adversarial patches by employing a
sliding window to extract a set of ally patches based on the
information content of the input image. The classifier’s la-
beling is determined by voting through multiple ally patches.
However, this method exhibits a limitation when dealing with
background-like images, as the ally patches with true labels
have much lower information, causing the adversarial patch
to remain dominant. [19] acknowledged this limitation, stat-
ing that in monotonous background images, the adversarial
patch will be dominant, and most non-adversarial patches
will fail to fulfill the constraint.

[20] investigated the concept of frequency regularization
to increase adversarial robustness. When comparing natural

and adversarial inputs, it became apparent that the majority
of differences lay in the low-frequency region. As a result,
[20] proposed frequency regularization (FR), a process that
balances the outputs of both natural and adversarial inputs
within the frequency domain, which in turn, results in an
improved robust accuracy of the model. This work pro-
vides additional support for the assertion that image classes
possessing substantial low-frequency content are inherently
more resilient to adversarial patch attacks.

Two works, [21] and [22], had proposed optimizations
related to adversarial patches. [21] had investigated the
significance of shape information on deep neural networks’
robustness in the context of adversarial attacks, demonstrat-
ing that their optimized shapes performed better at smaller
scales. However, they did not consider the significance of
background images when adversarial efficacy was concerned,
as they chose random images for their testing. [22] had
proposed a method to simultaneously optimize the position
and perturbation for an adversarial patch, obtaining high
attack success rates in the black-box setting. They fixed
the scale and shape of the patch, which left room for
further investigation into the impact of scale optimization
on adversarial efficacy.

In this paper, our paper seeks to fill this knowledge
gap by systematically examining the image characteristics
in frequency domain, where the frequencies indicate the
periodicity and information density that contribute to the
efficacy of adversarial patches. Our findings will not only
provide valuable insights into the vulnerability of deep learn-
ing models to adversarial patches in various visual context
but also contribute to the development of more robust and
reliable defense mechanisms against such attacks.

III. METHODOLOGY

A. Adversarial Patch

The adversarial patch P′ is computed by maximizing the
expectation of the [16] function as follows:

P′ = argmax
P

EX∼X,o∼O,l∼L[logPr(ŷ|a(P,X, o, l))] (3)

where ŷ represents the target image classifier model’s con-
fidence of the training image being the target class, where
the patch operator a is applied over the distribution of X
training set images. The patch location l and the randomized
patch rotated at random orientation o are also varied over
the distribution of locations L and orientations O to improve
the patch’s resiliency against varied placement locations and
angles. X represents an image from the training set X. P
represents the adversarial patch that, when added to the
original image X, is designed to cause a machine learning
model to misclassify the image.

B. Adversarial Patch Training

We initiated the adversarial patch, denoted as P′, as a
square patch with a width equivalent to 0.3 of the Incep-
tionV3’s input size (299×299×3), resulting in a patch size
of 89×89×3. We trained these patches by incorporating both
the concepts of random location and random rotation.

We selected a subset of the ImageNet validation dataset,
denoted as X, which consisted of 10 correctly classified
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images for each of the 1000 ImageNet classes. Hence, the
total number of images in the set X was 10,000.

The training step involved forward propagation where
we overlayed the adversarial patch P′ on 4 images at a
time, from the set X, at the random location l, and rotated
at orientation o. We optimize the patch minimizing the
following loss function:

L = −log(pŷ) (4)

Where pŷ is the predicted probability of the classifier model
for the input sample belonging to the target class ŷ.

The averaged gradient across the four inputs was then
back-propagated to update the patch. Since our prior experi-
ments indicated further iterations beyond 15,000 resulted in
negligible improvement, We repeated these steps until we
exhausted all images in the set 12 times, this allowed us to
achieve 30,000 iterations of updates.

We replicated these steps for each of the 1,000 target
classes, thereby creating 1,000 distinct adversarial patches.

C. Adversarial Patch Testing

Let P be the set of adversarial patches, where each patch
Pŷ is trained to fool the classifier into predicting a specific
target class ŷ. Let m(·) be the pre-trained InceptionV3 model,
and X̂ be the set of images from the ImageNet validation
dataset to be tested. The images from X̂ had been excluded
P’s training process, are appropriately prepared for model
input, where the original class of each image is correctly
predicted by the model m(·) without the patch.

For each image X ∈ X̂ and each patch Pŷ ∈ P, we:
1) Overlay the patch Pŷ onto the image X at a random

location, creating the attacked image X′ = o(X,Pŷ),
where o(·) is the overlay function.

2) Use m(·) to classify X′, obtaining the predicted class
ypred = m(X′).

We then assess the effectiveness of each target class ŷ:
• Success: The classifier is fooled by the patch and

predicts the target class, represented as

s(ŷ) =
∣∣∣{X ∈ X̂ | m(o(X,Pŷ)) = ŷ}

∣∣∣ (5)

where | · | denotes the cardinality (size) of the set.
• Failure: The classifier is not fooled by the patch and

either predicts the original class of the image or some
other class, represented as

d(ŷ) =
∣∣∣{X ∈ X̂ | m(o(X,Pŷ)) ̸= ŷ}

∣∣∣ (6)

This process is repeated for all images in X̂ and all patches
in P, producing a success and failure count for each target
class.

The adversarial efficacy in the form attack success rate,
E, for each target class ŷ, can be defined as:

Eŷ =
s(ŷ)

s(ŷ) + d(ŷ)
× 100 (7)

This gives the effectiveness as a percentage, where s(ŷ) is
the number of successful attacks, and s(ŷ)+d(ŷ) is the total
number of attacks for the target class ŷ. A higher Eŷ value

indicates that the adversarial patch Pŷ is more effective at
fooling the classifier m into predicting the target class ŷ.

D. Frequency-Filtered Patches

In this experiment, we are testing the attack efficacy of
adversarial patches under the influence of different types of
frequency filters: low-pass, high-pass, and band-elimination
filters. We apply these filters with different cutoff frequencies
r to the adversarial patches before overlaying them onto the
original images.

To perform operations in the frequency domain, the image
must be shifted from the spatial domain using the Discrete
Fourier Transform (DFT). Consider X[m,n] as a single
channel image where (m,n) represent spatial coordinates.
The mathematical definition of DFT is as follows:

F(u, v) =

M−1∑
m=0

N−1∑
n=0

X[m,n] · e−i2π(um
M + vn

N ) (8)

where (u, v) are the frequencies in the frequency domain and
M and N are the width and height of the image respectively.

The DFT produces a complex-valued output; The ampli-
tude function A(u, v) gives the magnitude of each frequency
component, and the phase function ϕ(u, v) gives the phase
shift of each frequency component.

A(u, v) =
√

Re[F(u, v)]2 + Im[F(u, v)]2 (9)

ϕ(u, v) = arctan

(
Im[F(u, v)]

Re[F(u, v)]

)
(10)

For an adversarial patch P, we obtain its frequency domain
representation by performing a Fourier Transform F on each
color channel of the patch:

F(P) = Â(u, v) · eiϕ
′(u,v) (11)

Where Â(u, v) gives the amplitude of frequency (u, v) in
a color channel of patch P, and ϕ′(u, v) gives the phase of
frequency (u, v) in a color channel of patch P.

We then apply the filter function f to the amplitude func-
tion of each color channel of the patch. This is represented
by:

A′(u, v) = (f ◦ Â)(u, v) (12)

In this equation, A′(u, v) is the filtered amplitude function
of the patch.
Low-pass filter: For the low-pass filter, we allow frequencies
within a certain square range around the DC component to
pass.

f(A(u, v)) =

{
A(u, v), if |u| ≤ r ∧ |v| ≤ r

0, otherwise
(13)

Here, r is the cutoff frequency for the low-pass filter.
High-pass filter: For the high-pass filter function with cutoff
frequency r, we also allow frequencies DC component to
pass. The filter function is defined as:

f(A(u, v)) =


A(u, v), if |u| > r ∧ |v| > r

A(u, v), if u = 0 ∧ v = 0

0, otherwise
(14)

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 697



Band-Elimination filter: We eliminate frequencies within a
certain range from the DC component. The filter function is
defined as:

f(A(u, v)) =


0, if |u| > r ∧ |u| > r

0, if |u| ≤ r + ω ∧ |v| ≤ r + ω

A(u, v), otherwise
(15)

Here, r denotes the lower-cutoff frequency, and ω is the
width of the elimination band.

After the application of filters, we convert P back to the
spatial domain using the inverse Fourier transform F−1 to
obtain the filtered patch:

P = F−1(A′(u, v) · eiϕ
′(u,v)) (16)

Attack success rate Er for each filtered patch Pŷ with
varying r cut-off frequencies, is then calculated using the
same method as Section III-C.

IV. EXPERIMENTAL RESULTS

Despite maintaining consistency in the training parameters
and data, the success rate of adversarial attacks showed a
broad range from 96% to 0%, even under optimal conditions.
This varied depending on the specific class targeted by the
patch. Fig. 2 presents the Eŷ in a ranked order for all of the
1000 potential targeted class in the adversarial patch attack
against the ImageNet classification dataset.

From the results, over 400 of the targeted classes displayed
an attack success rate of less than 1%. Therefore, it is evident
that the choice of target classes for the adversarial patch plays
a crucial role in determining the overall effectiveness of the
attack.

Fig. 2: Eŷ for all 1000 potential targeted classes in the
adversarial patch attack against the ImageNet classification
dataset. Over 400 of these targeted classes displayed an
attack success rate of less than 1%.

Next, we then test for Er by corrupting the adversarial
patches through various cutoff frequencies r.

Since our patches are trained with a width and height of
89 × 89, which is a 0.3 scale of input size for Inceptionv3,
we attempted to corrupt from 0 to 44 Hz with both high-
pass and low-pass filters and tested the patch efficacy under
different magnitudes of high and low frequency corruptions.

However, for the band-elimination filter, we can only
vary r from 0 Hz to 42 Hz. This is because the band-
elimination filter cuts out a band of frequencies around the
cutoff frequency, and when r is larger than 42, the band
extends beyond the boundaries of the frequency space.

Fig. 3, Fig. 4 and Fig. 5 show the spatial domain before
and after we have applied the different type of filters to an
adversarial patch.

Fig. 3: The spatial domain, attack success rate Er of the
adversarial patch targeting ImageNet class 386 (abacus)
before and after applying different filters. The filters were
used to corrupt the patch before testing its efficacy.

Fig. 4: The spatial domain of the adversarial patch after
applying high-pass filters (left), and low-pass filters (right)
from r = 0 to r = 15.

Fig. 5: The spatial domain of the adversarial patch after
applying band-elimination filters from r = 0 to r = 42,
changes to spatial domain are visually imperceptible.

To make the experiment manageable, we have chosen the
20 best performing target classes using the results obtained
in Fig. 2. Our selection of the target classes is shown in
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table I. Therefore, we have a total of 20 (target classes)
× 2 (filter types: low-pass and high-pass) × 45 (cutoff
frequency variations) + 5 (target classes) × 1 (filter type:
band-elimination) × 43 (cutoff frequency variations) = 2,015
different patch configurations to test over X̂.

TABLE I: Top 20 ImageNet target classes in Fig. 2, sorted
by highest Eŷ

ŷ Target Class Eŷ Pŷ

398 Abacus 96.27%

918 Crossword 94.84%

288 Leopard 92.66%

944 Artichoke 91.41%

30 Bullfrog 90.88%

490 Chainmail 90.26%

952 Fig 89.93%

987 Corn 89.80%

323 Monarch 87.67%

37 Turtle 87.34%

971 Bubble 87.19%

124 Crayfish 86.26%

397 Pufferfish 86.00%

752 Racket 85.48%

791 Cart 85.45%

805 Soccerball 85.36%

293 Cheetah 84.13%

566 Horn 82.53%

862 Torch 81.35%

616 Knot 81.16%

Fig. 6 shows the average attack success rate Er across 20
top performing target classes after applying high-pass and
low-pass filters. From the results, we can remove a large
portion of the higher frequency information (with low-pass
filter) of the image without significantly affecting the efficacy
of the adversarial patch. However, removing low-frequency
information (with high-pass filter) significantly decreased
adversarial efficacy, even at very low portions.

Fig. 6: Average Er of top 20 patches after corrupting with
high-pass filter (left), and low-pass (right) filter.

To identify the band of frequencies that had the most influ-
ence on the efficacy of the adversarial patch, we attempted to
corrupt our top 20 patches by using band-elimination filters
with a bandwidth of 2 Hz, shown in Fig. 5. Unlike high-pass
and low-pass filters, the corruption was very small, invisible

to the eye. However, adversarial efficacy showed an almost
20-point drop in average efficacy after filtering out 3 to 5 Hz
information at r = 2, as shown in Fig. 7.

Fig. 7: Average Er of top 20 patches for varying band-
elimination filters at ω = 2.

Additionally, through visual inspection, we have found
that the magnitude spectrum of image classes that are most
vulnerable to patch attacks has a consistent behavior at low
frequencies when compared to classes that are much more
resistant, where edge features are very well defined, resulting
in a distinct characteristics at lower frequencies, shown in
Fig. 8. This suggested that unlike the findings in other forms
of adversarial attacks [23], image classification models may
be particularly vulnerable to adversarial patch attacks that
exploit low-frequency components.

Fig. 8: Magnitude spectrum and InceptionV3 prediction of
images that are highly resistive (bottom) and highly vulner-
able (top) against adversarial patch attack.

V. CONCLUSION

We have demonstrated that low-frequency components
play a pivotal role in determining the effectiveness of ad-
versarial patch attacks. Our analysis of characteristics in
the frequency domain revealed that adversarial patches were
most effective when they retained their low-frequency com-
ponents, affirming the low frequencies’ dominance in adver-
sarial patch attacks. Filtering out low-frequency information
significantly decreased the patch’s efficacy, even at very low
portions. In contrast, the removal of high-frequency infor-
mation from the adversarial patch had a relatively minimal
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impact on the efficacy of the attack. We were also able
to pinpoint a significant drop in adversarial efficacy upon
specific information on the adversarial patch.

These findings offer insights for the development of more
robust defense against adversarial attacks. It is crucial to note
that adversarial attack effectiveness varies with the specific
class targeted by the patch, underlining the need to consider
the image characteristics when designing and evaluating both
adversarial attacks and defenses. Future work should con-
tinue to investigate this complex interaction between image
characteristics and adversarial attack efficacy. Our research
serves as a stepping stone to further exploration of additional
factors that could influence the performance of adversarial
patches and their interactions with various elements of visual
context. Such studies would contribute to the broader goal
of building more secure and reliable deep learning systems
in the face of adversarial threats.
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