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Abstract— In the context of an increasingly digital society 
with pressing privacy concerns, our research investigates the 
effectiveness of privacy-preserving artificial intelligence 
solutions like Federated Learning. This study focuses on three 
main areas: Federated and Centralized Learning applications, 
the influence of data heterogeneity on client data accuracy, and 
the evaluation of contemporary federated algorithms in 
scenarios of extreme heterogeneity. Federated Learning, using 
the FedAvg algorithm, demonstrated superior testing accuracy 
(88.54%) over Centralized Learning (87.98%) on the non-
heterogeneous CIFAR-10 dataset, indicating its potential as an 
efficient, privacy-preserving solution for various machine 
learning applications. Additionally, our findings highlight an 
inverse relationship between data heterogeneity and Federated 
Learning model accuracy, underscoring the need for strategies 
to mitigate this challenge and boost model performance. Upon 
evaluating several federated learning algorithms under high 
data heterogeneity (alpha=1.0), SCAFFOLD and FedOpt 
outperformed FedAvg and FedProx, demonstrating the 
significance of algorithm design in addressing data 
heterogeneity. SCAFFOLD and FedOpt showcased greater 
communication efficiency, attributed to their faster convergence 
and fewer required communication rounds. This study offers 
invaluable insights into addressing data heterogeneity, 
improving communication efficiency, and enhancing federated 
learning's performance and applicability in real-world 
scenarios, thereby furthering privacy-preserving artificial 
intelligence research. 

Keywords—federated learning, data heterogeneity, cifar-10, 
FedAvg, FedOpt, FedProx, SCAFFOLD 

I. INTRODUCTION 
The increasing universality of digital technology and the 

proliferation of data have led to a growing concern about data 
privacy and security. Traditional centralized data control and 
storage architectures expose sensitive information to potential 
breaches, posing risks to users' privacy [1]. With the 
increasing prevalence of the Internet of Things (IoT) and the 
subsequent generation of vast amounts of data, the need for 
effective privacy preservation techniques has become more 
urgent than ever [2]. The advent of federated learning (FL) 
presents a potential resolution to prevailing privacy concerns 
by enabling decentralized, collaborative learning among 
multiple devices or organizations without sharing raw data [3]. 

FL has been successfully applied in various domains, 
including query suggestions for Google Keyboard [3], 
electronic health record (EHR) analysis [4], credit card fraud 
detection [5], and predicting patient outcomes for COVID-19 

[6]. However, one critical challenge in FL is data 
heterogeneity, the differences in data distribution (e.g. 
numeric, categorical, text-based, etc.) across the devices or 
servers participating in the learning process, which arises 
when the data distribution across clients or devices is non-
identically and independently distributed (non-IID) [11]. Data 
heterogeneity can negatively impact the convergence and 
generalization of FL models, affecting the model's 
performance [8],[9]. 

In applications like smartphone apps predicting user 
behavior, unique user data causes data heterogeneity. 
Federated learning trains models locally on each phone, and 
only model updates are shared with a central server. The 
process iterates until the global model performs optimally. For 
significant data deviations, algorithms like SCAFFOLD 
handle this heterogeneity, guaranteeing accurate and reliable 
federated learning. 

Recent efforts have been made to assess and address data 
heterogeneity in FL. Several benchmarks and frameworks 
have been proposed to evaluate the impact of data 
heterogeneity on FL [9],[10]. Researchers have also explored 
techniques to improve the efficiency and robustness of FL in 
the presence of heterogeneous data, such as personalized 
federated learning [12],[17], communication-efficient 
federated learning [13],[14],[15],[16], and federated multi-
task learning [21]. However, there is a need for a 
comprehensive examination of the implications of data 
heterogeneity on privacy-enhanced federated learning, 
especially with real-world datasets. 

This paper contributes the following:  

a) A comprehensive comparison of Federated Learning 
and Centralized Learning using the widely used 
image classification dataset, CIFAR-10.  

b) An in-depth analysis of the impact of data 
heterogeneity on the performance and evaluation of 
several state-of-the-art FL algorithms (FedAvg, 
FedOpt, FedProx, and SCAFFOLD) under extreme 
heterogeneity conditions. 

c) Provides valuable understanding of data 
heterogeneity issues in federated learning 
environments, sheds light on the practicality and 
constraints of various algorithms and suggests 
potential research paths for federated learning. 

In this paper, section II explores the current algorithms like 
FedAvg, FedOpt, FedProx, and SCAFFOLD; section III 
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describes their experimental design, including dataset 
selection and heterogeneity manipulation and measurement 
methods; section IV showcases findings, such as data 
heterogeneity's effect on model efficacy and a comparative 
analysis of various federated learning algorithms; and section 
V summarizes essential insights and stresses the need to 
account for data heterogeneity in federated learning 
algorithms. 

II. REVIEW OF RELATED LITERATURE 
Data heterogeneity is a significant challenge in FL, as it 

can adversely affect the convergence and generalization of FL 
models [7],[8],[9]. Several researchers have proposed 
techniques to address data heterogeneity in FL, including 
personalized federated learning [12],[17], communication-
efficient federated learning [13],[14],[15],[16], and federated 
multi-task learning [21]. 

Personalized federated learning has been proposed to tailor 
the learning process to each client, considering their unique 
data distributions [12],[17]. Yang et al. [12] provided a 
comprehensive overview of federated learning concepts and 
applications, highlighting the challenges of non-IID data and 
the need for personalized learning approaches. Fallah et al. 
[17] introduced a meta-learning approach for personalized 
federated learning, enabling the learning algorithm to adapt to 
the unique characteristics of each client's data distribution. 

Communication-efficient federated learning techniques 
aim to minimize the communication overhead existing 
between the engaged clients and the primary server. 
[13],[14],[15],[16]. McMahan et al. [16] proposed a 
communication-efficient learning approach for deep networks 
based on decentralized data, which significantly reduced the 
quantity of information transmitted between clients and 
servers. Li and Song [13] developed a privacy-preserving, 
communication-efficient federated multi-armed bandits 
algorithm, ensuring both efficient learning and privacy 
preservation. 

Federated multi-task learning (FML) is another approach 
to tackle data heterogeneity by learning multiple related tasks 
simultaneously [21]. Smith et al. [21] introduced an FML 
framework that allows clients to learn multiple tasks 
concurrently while sharing a global model. This methodology 
has demonstrated enhancements in FL model performance 
amidst data heterogeneity, concurrently maintaining data 
confidentiality and security. 

Researchers have also explored various techniques to 
mitigate the impact of data heterogeneity in FL through data 
augmentation [8], redefining data heterogeneity [9], and 
analyzing the convergence of FL algorithms on non-IID data 
[25]. De Luca et al. [8] address the overfitting, limited training 
data and data heterogeneity using data augmentation. Morafah 
et al. [9] proposed a notion of data heterogeneity called "data 
diversity," standard benchmark called "FedHetero," and a 
novel FL approach called "Semantic-Aware Federated 
Learning (SAFL)" to address semantic differences across 
devices and assess the impact of data heterogeneity on FL. 

FL has been successfully applied to various domains that 
require privacy preservation, including healthcare 
[4],[6],[22],[23], finance [5], and language modeling [22]. For 
instance, Chen et al. [22] developed and validated a federated 
learning model for the International Classification of Diseases, 
10th Revision (ICD-10) classification using deep 

contextualized language models, demonstrating the 
effectiveness of FL in preserving privacy while achieving high 
classification accuracy. Li et al. [23] presented a multi-site 
functional magnetic resonance imaging (fMRI) assessment 
utilizing privacy-maintaining federated learning, in tandem 
with domain adaptation, showcasing the potential of FL in 
collaborative medical research. 

In the context of privacy-enhanced FL, researchers have 
investigated various techniques to ensure the robustness and 
privacy of the learning process, such as Byzantine-robust 
aggregation schemes [19], loss-aware weight quantization 
[20], and federated optimization in heterogeneous networks 
[18]. Li et al. [19] conducted an experimental study on 
Byzantine-robust aggregation schemes, demonstrating their 
effectiveness in providing robustness against adversarial 
clients in FL. Hou and Kwok [20] proposed a loss-aware 
weight quantization method for deep networks to improve the 
communication efficiency while maintaining model accuracy. 
Li et al. [18] explored federated optimization in heterogeneous 
networks, addressing the challenges of clients with different 
computational capabilities, network bandwidths, and data 
distributions. 

III. IMPLEMENTATION 
TABLE I 

PRESENTS THE IMPLEMENTATION ENVIRONMENT FOR THE FEDERATED 
OPTIMIZATION ALGORITHMS (FEDAVG, FEDOPT, FEDPROX, AND SCAFFOLD) 

TESTED ON THE CIFAR-10 DATASET 
 

Hardware ASUS FX505DY AMD Ryzen 5 Laptop 

Software 

Windows 11 (64-bit) Home 
Python 3.8 
TensorFlow 2.9 
NVFlare 2.2 

Parameters 

Dataset: CIFAR-10 
Federated Optimization: FedAvg, FedOpt, 
FedProx, SCAFFOLD 

 

A. Baseline vs Federated Learning 
Wang et al. [24] introduced nonparametric techniques to 

address data heterogeneity by employing Dirichlet sampling. 
In the current implementation, this method is utilized to 
generate heterogeneous data partitions from the CIFAR10 
dataset. The degree of heterogeneity is denoted by the alpha 
parameter, which ranges from 0 to 1. An alpha value of 1 
signifies a completely homogeneous data distribution, while 
an alpha of 0 indicates an extreme heterogeneous partitioning 
of the dataset. 

TABLE II 
PARAMETER I.  CENTRALIZED LEARNING VS FEDERATED LEARNING 

Centralized 
Learning 
Executes 

Edge Client 1 
Alpha 1 
Local Epochs 25 
Total Updates 25 

Federated 
Learning 
Executes 

Edge Clients 8 
Alpha 1 
Communication Rounds 50 
Local Epochs 4 
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Total Updates 25 
 Table II presents the parameter configurations for the 
comparative study of Centralized Learning (CL) and 
Federated Learning (FL) implementations. The CL method 
incorporates a single client containing the entire CIFAR10 
dataset in its edge data storage, exhibiting a purely 
homogeneous data distribution. It should be noted that the 
alpha value for Centralized Learning is consistently set at 1. 
Conversely, the FL approach involves 8 clients and employs 
the FedAvg optimization algorithm with a homogeneous 
database partitioning scheme. To establish a valid benchmark 
comparison between the federated learning clients, all of them 
were assigned identical local epoch parameters. 

Effect of Data Heterogeneity  

 Data heterogeneity refers to the discrepancies or variations 
in data distributed among decentralized devices or clients. It 
can considerably affect the performance of a federated model, 
as it may impact the quality and uniformity of the model 
updates aggregated from participating clients.  

TABLE III 
EFFECT OF DATA HETEROGENEITY 

FedAvg 
Executes 

Edge Clients 8 

Alpha 
1.0, 0.5, 0.3, 

0.1 
Communication Rounds 50 
Local Epochs 4 
Total Updates 25 

 Table III examines the performance of FedAvg optimizer 
under varying alpha values, highlighting the importance of 
assessing data heterogeneity in federated learning.  

B. FL Algorithms Assessments in Extreme Heteregoneity 
 Federated Averaging [25] (FedAvg), Federated 
Optimization [26] (FedOpt), Federated Proximal [18] 
(FedProx), and Self-Adjusting Federated Learning through 
Communication-Efficient LOcal Descent [27] (SCAFFOLD) 
were implemented under identical setups and hyperparameters 
in a context of extreme data heterogeneity. 

TABLE IV 
FEDAVG VS FEDOPT VS FEDPROX VS SCAFFOLD 

FedAvg, 
FedOpt, 
FedProx, and 
SCAFFOLD 
Executes 

Edge Clients 8 
Alpha 0.1 
Communication Rounds 50 
Local Epochs 4 
Total Updates 25 

 Federated Averaging (FedAvg) is a widely-used 
optimization algorithm in the domain of federated learning. 
Introduced by McMahan et al. [16], it has become a popular 
choice for training machine learning models in a decentralized 
fashion, while maintaining data privacy and minimizing 
communication overhead. 

Essentially, the algorithm allows a model to be trained 
across multiple decentralized nodes, with each node learning 
from its local data and subsequently sharing its local model 
updates with a central server. This local model training 
significantly reduces the need for data exchange over the 
network, which greatly enhances computational efficiency 
and decreases communication costs. 

The privacy-preserving nature of the FedAvg algorithm 
stems from this decentralized approach to learning. By 
ensuring that raw data never leaves its original node, and only 
model updates are communicated to the central server, the 
algorithm effectively safeguards individual data privacy. This 
feature becomes exceedingly valuable in scenarios involving 
sensitive data, such as healthcare or financial data. 

FedAvg has been implemented in various studies to 
address different challenges in FL. For example, Zhao et al. 
[11] investigated the effects of non-IID data in a 
heterogeneous setting and proposed strategies to overcome the 
challenges posed by such data distributions. In another study, 
Sattler et al. [28] explored the combination of knowledge 
distillation and federated learning with the aim of enhancing 
the global model's efficacy. These studies, among others, have 
demonstrated the versatility and effectiveness of the FedAvg 
algorithm in diverse scenarios. 

It suggests that the choice of hyperparameters, the 
handling of data heterogeneity, and the communication 
efficiency between clients and the central server play 
significant roles in determining the performance of the 
federated model. 

Algorithm 1: FedAvg Algorithm 

Input: global_model, clients_data, num_comm_rounds, local_epochs 
Output: global_model 
 
1: Initialize num_clients ← length(clients_data) 
2: for round ← 1 to num_comm_rounds do 
3:     Initialize clients_weights ← empty list 
4:     for client_idx ← 1 to num_clients do 
5:         local_model_weights ← TrainLocalModel(global_model, 
clients_data[client_idx], local_epochs) 
6:         Append (length(clients_data[client_idx]), local_model_weights) 
to clients_weights 
7:     end for 
8:     aggregated_weights ← AggregateModelWeights(clients_weights) 
9:     Set global_model weights to aggregated_weights 
10: end for 
11: Return global_model 

 Federated Optimization (FedOpt) is an advanced 
optimization algorithm that aims to improve the performance 
and communication efficiency of decentralized machine 
learning models. It extends the Federated Averaging 
(FedAvg) algorithm by incorporating techniques such as 
adaptive learning rates and momentum-based optimization, 
which enable more efficient and robust model convergence. 

FedOpt has been used in numerous studies to tackle FL 
challenges, such as, Li et al. [29] presented FedOpt and 
showed its enhanced performance over FedAvg. Additionally, 
Caldas et al. [10] studied how adaptive learning rates affect 
federated learning algorithms, including FedOpt. 

These studies highlight the value of adaptive learning rates 
and momentum-based optimization in improving the 
convergence of federated models. Such techniques enable 
FedOpt to adjust to each client's local data traits, streamline 
model updates, lessen communication overhead, and boost 
overall performance. 

Algorithm 2: FedOpt Algorithm 

Input: global_model, clients_data, num_comm_rounds, local_epochs 
Output: global_model 
 
1: Initialize num_clients ← length(clients_data) 
2: Initialize global_velocity ← zero tensor with the same shape as 
global_model.trainable_variables 
3: for round ← 1 to num_comm_rounds do 
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4:     Initialize clients_weights_velocities ← empty list 
5:     for client_idx ← 1 to num_clients do 
6:         (local_model_weights, local_velocity) ← 
TrainLocalModel(global_model, clients_data[client_idx], local_epochs, 
global_velocity) 
7:         Append (length(clients_data[client_idx]), local_model_weights, 
local_velocity) to clients_weights_velocities 
8:     end for 
9:     (aggregated_weights, aggregated_velocities) ← 
AggregateModelWeightsVelocities(clients_weights_velocities) 
10:    Set global_model weights to aggregated_weights 
11:    Set global_velocity to aggregated_velocities 
12: end for 
13: Return global_model 

 The FedOpt algorithm optimizes a global model through 
iterative communication rounds by aggregating local model 
updates from participating clients. Clients train their local 
models using adaptive learning rates and momentum-based 
optimization, improving convergence properties. The server 
updates the global model and global velocity tensor, ensuring 
efficient and effective federated learning. 

The Federated Proximal (FedProx), is an optimization 
algorithm designed for FL systems with non-IID data and 
heterogeneous client participation. The algorithm builds on 
FedAvg by introducing a proximal term that mitigates the 
impact of stragglers and clients with poor-quality updates. 

This was proposed by Sahu et al. in their paper titled "On 
the Convergence of Federated Optimization in Heterogeneous 
Networks" [25]. The authors demonstrated that FedProx is 
well-suited for heterogeneous FL settings involving non-IID 
data, and compared to FedAvg, offers better convergence 
properties. By incorporating a proximal term, the algorithm 
penalizes weight updates that deviate substantially from the 
global model, thus improving convergence properties. It 
showcases its adaptability and robustness in a variety of 
scenarios. They conducted experiments using CIFAR-10 and 
FEMNIST. 

Algorithm 3: FedProx Algorithm 

Input: global_model, clients_data, num_comm_rounds, local_epochs, 
learning_rate, mu 
Output: global_model 
 
1: Initialize num_clients ← length(clients_data) 
2: for round ← 1 to num_comm_rounds do 
3: Initialize clients_weights ← empty list 
4: Initialize clients_sizes ← empty list 
5: for client_idx ← 1 to num_clients do 
6: local_model_weights ← ClientUpdate(global_model, 
clients_data[client_idx], local_epochs, learning_rate, mu) 
7: Append local_model_weights to clients_weights 
8: Append length(clients_data[client_idx]) to clients_sizes 
9: end for 
10: aggregated_weights ← AggregateModelWeights(clients_weights, 
clients_sizes) 
11: Set global_model weights to aggregated_weights 
12: end for 
13: Return global_model 

 The FedProx algorithm advances global model 
optimization in federated learning by repeatedly collecting 
and merging local model updates from clients. It uses 
proximal regularization to manage infrequent updates in non-
IID environments, improving efficiency, effectiveness, and 
convergence of federated learning. 

SCAFFOLD (Self-Adjusting Federated Learning through 
Communication-Efficient LOcal Descent) is a 
communication-efficient federated learning algorithm that 
adapts to the heterogeneity in the data distribution and client 
participation. It is designed to address the challenges of 

heterogeneous data and stragglers, while maintaining 
communication efficiency. 

 One of the foundational studies on SCAFFOLD is by 
Karimireddy et al. [27], which introduced the algorithm and 
evaluated its performance on several benchmark datasets, 
including MNIST, CIFAR-10, and Shakespeare. The results 
demonstrated that SCAFFOLD outperforms other FL 
algorithms in terms of communication efficiency and model 
convergence. Furthermore, the algorithm has shown improved 
generalization performance, particularly in the presence of 
non-IID data and stragglers.  

Non-IID data refers to the uneven data distribution across 
participating clients or nodes, due to varied user behavior, 
regional specifics, and device capabilities. This creates data 
heterogeneity, a contrast to IID data, where each data point is 
independently drawn with equal probability.  

The SCAFFOLD algorithm excelled because it includes a 
correction term in client model updates to lessen data 
heterogeneity's impact, aiding in better model convergence 
and accuracy in highly heterogeneous settings. It is employing 
local control variates, reducing update variance, and adapting 
to diverse data distributions and straggling clients or clients 
with infrequent updates. Its design minimizes communication 
overhead by accelerating convergence and requiring fewer 
rounds.  

Algorithm 4: SCAFFOLD Algorithm 

Input: global_model, clients_data, num_comm_rounds, local_epochs, 
learning_rate 
Output: global_model 
 
1: Initialize control_variates ← zero tensors with the same shape as 
global_model.trainable_variables 
2: for comm_round ← 1 to num_comm_rounds do 
3:     Initialize clients_gradients ← empty list 
4:     for client_idx ← 1 to num_clients do 
5:         Initialize local_model ← copy of global_model 
6:         for epoch ← 1 to local_epochs do 
7:             gradients ← LocalUpdate(local_model, 
clients_data[client_idx], control_variates, learning_rate) 
8:             Append gradients to clients_gradients 
9:         end for 
10:     end for 
11:     aggregated_gradients ← AggregateGradients(clients_gradients) 
12:     Update global_model.trainable_variables with 
aggregated_gradients 
13:     Update control_variates with aggregated_gradients and 
clients_gradients 
14: end for 
15: Return global_model 

 The performance of the federated model is heavily 
affected by factors such as communication rounds, local 
epochs, and client data heterogeneity. 

IV. RESULTS AND DISCUSSIONS 
This section encompasses three key aspects of the author's 

contribution: (1) implementing Federated and Centralized 
Learning with corresponding communication rounds and local 
epochs, (2) analyzing the effect of data heterogeneity among 
clients on accuracy performance, and (3) evaluating state-of-
the-art federated algorithms under extreme heterogeneity 
conditions. 

A. Baseline Learning vs Federated Learning 
Figure 1 compares the testing accuracy of Centralized 

Learning and Federated Learning using FedAvg algorithm. In 
conclusion, our study reveals that Federated Learning, 
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achieving 88.54% accuracy, outperforms Centralized 
Learning with 87.98% accuracy on the non-heterogeneous 
CIFAR-10 dataset. This finding highlights the effectiveness of 
Federated Learning in addressing the challenges posed by 
Centralized Learning while maintaining competitive accuracy 
levels. As the demand for privacy-preserving, decentralized 
data processing methods increases, Federated Learning 
emerges as a valuable alternative for various machine learning 
applications. It is essential for researchers and practitioners to 
continue exploring and optimizing Federated Learning 
techniques to further improve their performance and 
applicability across diverse real-world scenarios.

 
Fig. 1. Centralized learning (CL) vs Federated learning (FL) 

B. Effect of Data Heterogeneity  
In Figure 2, the test result reveals a clear inverse 

relationship between data heterogeneity and model accuracy 
in Federated Learning. As the alpha value decreases, 
representing increased data heterogeneity, the model's 
accuracy declines accordingly: alpha=1.0 (88.54%), 
alpha=0.5 (86.33%), alpha=0.3 (83.50%), and alpha=0.1 
(77.33%). These findings emphasize the challenges posed by 
data heterogeneity in federated learning environments and the 
importance of addressing these challenges to improve model 
performance. 

 
Fig. 2. FedAvg on 4 different data heterogeneity 

C. FL Algorithms Assessments in Extreme Heteregoneity 
In Figure 3, the evaluation of various federated learning 

algorithms in the context of high data heterogeneity 

(alpha=1.0) reveals a distinct performance hierarchy, it 
highlights the superior performance of SCAFFOLD (82.22%) 
and FedOpt (80.13%) over FedAvg (77.33%) and FedProx 
(76.15%). The improved convergence rates of SCAFFOLD 
and FedOpt can be attributed to SCAFFOLD's use of a 
correction term when updating client models and FedOpt's 
employment of SGD with momentum for global model 
updates.  

 

Fig. 3. FedAvg vs FedOpt vs FedProx vs SCAFFOLD 

This study significantly advances the understanding of 
data heterogeneity in federated learning settings by 
investigating the performance of FedAvg, FedOpt, FedProx, 
and SCAFFOLD. It reveals strengths and weaknesses, 
deepening understanding of real-world applicability and 
limitations.  

 Under extreme heterogeneity conditions, SCAFFOLD 
emerges as the most efficient performer due to its design that 
addresses non-IID data, making it particularly adept at 
handling heterogeneous data in Federated Learning (FL). Both 
SCAFFOLD and FedOpt demonstrate superior 
communication efficiency by converging faster and requiring 
fewer communication rounds, in contrast to FedAvg and 
FedProx, which necessitate more rounds for convergence, 
thereby affecting their efficiency. Additionally, the robustness 
of SCAFFOLD and FedOpt to local updates is enhanced by 
the local control variates of SCAFFOLD and the use of 
Stochastic Gradient Descent (SGD) with momentum by 
FedOpt. This is a marked difference from FedAvg and 
FedProx, which may exhibit heightened sensitivity to local 
updates, consequently affecting their performance in 
heterogeneous settings. Ultimately, the enhanced scalability 
of SCAFFOLD and FedOpt is attributable to their capacity to 
manage heterogeneous data and achieve faster convergence. 

V. CONCLUSION 
Our research centered on three main areas: (1) the 

application of Federated and Centralized Learning with 
appropriate communication rounds and local epochs, (2) the 
investigation of data heterogeneity's impact on the accuracy of 
client data, and (3) the assessment of modern federated 
algorithms under severe heterogeneity conditions. 

The study reveals that Federated Learning using the 
FedAvg algorithm surpasses Centralized Learning in testing 
accuracy (88.54% vs 87.98%) on the CIFAR-10 dataset, 
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suggesting that Federated Learning could serve as an 
effective, privacy-preserving alternative for numerous 
machine learning applications. 

We found an inverse correlation between data 
heterogeneity and model accuracy within Federated Learning, 
indicating the need for strategies to address this challenge and 
enhance model performance. 

Furthermore, the evaluation of various federated learning 
algorithms under high data heterogeneity (alpha=1.0) 
indicates superior performance of SCAFFOLD (82.22%) and 
FedOpt (80.13%) over FedAvg (77.33%) and FedProx 
(76.15%). This highlights the importance of algorithm design 
in addressing data heterogeneity, with SCAFFOLD and 
FedOpt demonstrating better communication efficiency due to 
faster convergence and fewer communication rounds. 

Future research should consider methods for 
preprocessing, partitioning, and data augmentation to boost 
performance in federated learning under heterogeneous data 
conditions. Furthermore, strategies for improved client 
selection, dynamic learning rates, and adaptable 
communication strategies could enhance the efficiency and 
applicability of federated learning across various scenarios. 
The development of adaptive data management techniques in 
federated learning could contribute to system performance 
enhancements, thus addressing the challenge of data 
heterogeneity. 
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