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Abstract—The integration of data science and marine science
into a single platform has led to a revolution in the understanding
of oceanographic processes. Sea Surface Temperature (SST) pre-
diction plays a vital role in various fields, namely marine ecology,
climate change studies, and environmental forecasting. This paper
delves into the most recent advancements in SST prediction tech-
niques and their impact on oceanographic exploration. Moreover,
it presents a novel model aimed at addressing the limitations
of previous methodologies. The utilisation of advanced Deep
Learning and Machine Learning architectures has significantly
improved the accuracy of the SST forecasts, surpassing the less
accurate results previously obtained through numerical models.
Modern techniques can capture spatial correlations and temporal
dependencies in SST data. This enables predicting SST values
more reliably and accurately. These cutting-edge discoveries
provide valuable insights into oceanographic phenomena, aiding
in the enhanced understanding of the ocean and bolstering our
capacity to predict and comprehend significant and captivating
climate events. This study underscores the importance of lever-
aging the critical role of harnessing the vast advancements in
SST prediction to advance marine science and facilitate informed
decision-making across diverse sectors related to the marine
realm.

Index Terms—Sea Surface Temperature(SST), Marine Data
Science, Transformer, LSTM, CNN, Attention Mechanism, Ma-
chine Learning, Oceanography, ConvLSTM

I. INTRODUCTION

Oceanography delves into the scientific examination of
Earth’s oceans, covering a wide range of aspects, including
their physical properties, chemical composition, biological
components, and geological characteristics. Advancing our
understanding of Earth’s oceans and their profound influence
on the planet stands as the fundamental goal of oceanography.
Within this realm, the essentiality of SST cannot be over-
stated. SST plays a pivotal role in unravelling the intricate

interactions between the ocean and the Earth’s atmosphere,
thereby holding immense significance. It serves as a critical
component with diverse applications, including the examina-
tion of marine ecosystems, weather prediction, and the analysis
and modelling of complex climate patterns. A comprehensive
study conducted by Collin et al. [1] further substantiates the
significance of SST in this particular context.

Predicting SST with utmost precision is an extremely chal-
lenging endeavour due to the complex nature of heat radiation
and flux and uncertainty in wind patterns over the sea surface.

In recent years, various data-driven approaches have been
explored, including the Long Short Term Memory (LSTM)
model as examined by Xiao et al. [2], Deep Learning Neural
Networks (DNNs) along with ensembling of Stacked DNNs as
investigated in the works in [3] [4] and [5], Attention Mecha-
nisms and Graph Neural Networks (GNNs) These methods are
the types of Artificial Neural Networks (ANNs) demonstrated
by Tripathi et al. [6] that have gained significant popularity
for SST prediction. The inspiration for employing ANNs stems
from the brain, our most significant organ that endows humans
with cognitive capabilities and numerous other remarkable
attributes. This feature enables the model to seamlessly handle
non-linearity and aptly fit random data as shown in [6]. Novel
advancements in SST prediction have witnessed significant
progress in the application of Deep Learning (DL) techniques,
particularly the integration of Convolutional Neural Networks
(CNNs) and LSTM models. These advancements have im-
proved correctness and enhanced capabilities in capturing
spatial and temporal dependencies within SST data.

Several advancements have been made in the field of ocean
temperature prediction. One notable development is the Multi-
layer ConvLSTM model proposed by Zhang et al. [7]. It
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combines CNN, LSTM, and layer stacking to predict ocean
temperature in a 3D space, taking into account horizontal and
vertical temperature variations across different depths. This
approach has shown improved reliability, particularly in the
upper layers over time. Another approach worth mentioning
is the combination of 3D CNN and LSTM with an attention
mechanism, as explored [8]. It considers spatial correlation and
temporal dependency of SST data for a specific geographical
area, leveraging XGBoost for feature extraction. Experimen-
tal results have demonstrated enhanced prediction accuracy
and reduced complexity. Additionally, LSTM networks have
proven effective in predicting SST, outperforming traditional
neural networks, as demonstrated by Sarkar et al. in [9].
Integration of DL techniques with numerical estimators and
the use of GNNs with attention mechanisms have also shown
promising results in SST prediction as portrayed by the work
done in [8] [9] and [10].

These recent developments have paved the way for the
development of models capable of being more reliable and
accurate in predicting the SST and providing precious insights
for various applications such as climate research, oceanogra-
phy, and environmental monitoring. Specifically, in the realm
of SST prediction, there is an inherent need for advancements
in our models and methodologies to ensure greater accuracy
and to pave the way for further growth and progress in this
direction.

Existing methods struggle to properly capture the spatial
and temporal dependencies in SST data. To overcome this,
we propose the ConvLSTM-Transformer, a novel model that
combines Convolutional layers, LSTM, and Transformer archi-
tecture. This integration captures spatial, sequential, and global
interactions, improving prediction accuracy and generalisation.
Our model’s ability to handle long-term dependencies has
the potential to revolutionise SST forecasting and enhance
understanding of oceanic conditions.

The main contributions of this paper are as follows:
(i) A comprehensive analysis of various research studies

focusing on the forecasting of SST highlights the ad-
vancements achieved and the challenges encountered by
current models.

(ii) An innovative model called ConvLSTMTransformer, im-
proves the precision of predicting SST by integrating
spatial and temporal information. Moreover, this model
effectively overcomes the limitations of existing methods.

The paper is organised in the following manner: Section II
discusses the details of preliminaries related to SST prediction
and oceanographic exploration. In Section III several pertinent
studies that apply to the present work are presented and
analysed. Section IV is reported to our proposed model and is
extensively discussed. Finally, Section V presents conclusive
findings and engages in a comprehensive discussion on the
future prospects of the study.

II. PRELIMINARIES

In the introductory section, the concise definitions of key
terms and relevant topics that are significant to the research
article are provided. The aim of this section is to offer brief
information that helps in understanding each topic.

1) Spatial Correlation and Temporal Dependency: Spa-
tial correlation refers to the statistical relationship or

the dependency among the observations at various lo-
cations in a spatial domain. It captures the essence of
the similarity or relatedness of the values of a particular
variable across neighbouring locations. In the context of
the paper, spatial correlation is relevant in the analysis
and modelling of SST data. While temporal dependency
pertains to the correlation or interdependence between
observations at various time points within a dataset. It
defines that the value of a variable at a particular time is
influenced by the values that are observed in previous
time steps leading to that. Capturing and interpreting
temporal dependency is crucial for producing accurate
time series forecasting.

2) ARIMAX: The acronym ARIMAX refers to the model
known as AutoRegressive Integrated Moving Average
with Exogenous Variables as explored by the work
in [11]. This forecasting model is widely used and builds
upon the traditional ARIMA model by incorporating
external variables. By incorporating autoregressive and
moving average components, as well as differencing
for capturing temporal patterns in time series data, the
ARIMAX model further enhances its forecasting capabil-
ities. Moreover, it considers the influence of exogenous
variables, leading to improved overall accuracy in SST
prediction.

3) Layer Stacking, XGBoost and Attention Mechanisms:
Layer stacking involves merging multiple layers of mod-
els into a unified platform to enhance the predictive
capability of the overall model. XGBoost, a popular
machine learning algorithm, utilises a gradient-boosting
framework to combine multiple weak predictive models,
often decision trees, into a powerful ensemble model that
exhibits superior performance. Attention mechanisms, on
the other hand, are components frequently employed in
neural network models. They enable selective weighting
and focusing on distinct segments of input data, allowing
the model to prioritise and emphasise the most pertinent
and significant elements within the input sequence.

4) CNN and 3D CNNs: These are deep learning architec-
tures commonly utilised for processing visual and graph-
ical data. CNNs excel in image and object recognition
tasks by leveraging convolutional filters to automatically
learn hierarchical representations in the input data. These
filters enable the model to easily detect local patterns
in the input image, which are then combined and trans-
formed in subsequent layers to capture more complex
and abstract features. Expanding upon the success of
CNNs, 3D CNNs extend this concept to volumetric data
distributed across a 3D space. By incorporating additional
dimensions, these models can capture spatial and tempo-
ral dependencies within the data. Through the application
of 3-dimensional convolutional filters, 3D CNNs excel in
learning spatiotemporal features.

5) LSTM & GRU Encoder-Decoder (GED): LSTMs and
GED models are recurrent neural network architectures
specifically designed to capture and recognize sequential
dependencies in time series data. LSTMs overcome the
vanishing gradient problem commonly faced by tradi-
tional Recurrent Neural Networks (RNNs) by incorpo-
rating a gating mechanism that allows the model to
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capture long-term dependencies and retain information
over extended periods [12]. The GED model extends the
LSTM architecture by incorporating gating mechanisms
in both the encoding and decoding components. During
the encoding phase, the input sequence is processed
upon, resulting in the generation of a fixed-length context
vector. The decoder utilises this contextual vector to
produce an output sequence that suits the provided input.

6) Graph Neural Networks (GNNs): These are specialised
neural network architectures that work on data that are
structured in the form of graphs. GNNs take account of
the relationships and connection parameters which exist
in the graph to perform computation and to learn how
the nodes and edges in the graph are represented. By
the process of iteratively aggregating information from
the surrounding nodes, these neural networks can capture
both local and global graph structures and relationships,
making these structures well-suited for tasks that involve
graph data, such as social networks, recommendation
engines, and molecular chemistry.

7) Multilayer Convolutional LSTM (M-convLSTM) and
Transformers: Models that combine the strength of
multiple neural networks as well as incorporating ad-
vanced architectures are known as M-convLSTMs and
Transformers. M-convLSTM combines the features of
the spatiotemporal modelling capability of CNNs and
LSTM networks to identify complex patterns and dy-
namics within sequential data along with spatial infor-
mation. Transformers, on the other hand, are based on
self-attention models that excel at capturing long-range
dependencies in sequential data without actually needing
the recurrent connections. These have gained massive
attention in natural language processing tasks as they
prove to be a suitable candidate for such, but could also
be applied to various other sequential data domains and
are very capable in order to produce paramount levels of
accuracy in the output.

These combinations of definitions provide a very concise
and easy to dive into perspective into the wide field of neural
networks and oceanographic exploration, and will further help
the reader to understand the paper with a better outlook
towards related terms and the key characteristics of those.

III. RELATED WORK

Several existing works in different domains related to the
prediction of SST have been carefully studied and anal-
ysed. These papers employ several models and techniques
to enhance the accuracy and improve the efficiency of SST
prediction. The paper by Zhang et al. [7] introduces the
M-convLSTM model, which combines CNN, LSTM and
layer stacking to predict 3 Dimensional ocean temperature.
The model used in the paper considered the horizontal and
vertical temperature variations across the varying depths of
the ocean, which in turn, led to better accuracy in upper
layers with increasing time steps. Another paper by Qiao et
al. [8] proposes a novel approach that combines 3D CNN,
LSTM with attention mechanisms, and XGBoost for feature
extraction to predict SST. The experimental results from the
paper highlight improved prediction accuracy while comparing
them to the existing models, along with lower complexity and

higher training efficiency. The deep learning neural networks
are used as explored by the work in [9], where LSTM
networks outperform the traditional neural networks, which
proved LSTM are a better alternative in SST prediction. This
fact can be verified by the model achieving high correlation
values almost close to 1.0 for location-specific SST forecasts
in varying time domains. The effectiveness of LSTM for use
in the prediction of SST on long, medium and short time scale
reflected in [13] is very high, specifically around the coastal
seas. Also, usage of an ensemble of stacked DNNs is laid
out and studied in [14] to incorporate air temperature and
water temperature into the predictive model, resulting in an
improved amount of accuracy in SST forecasting. The CFCC-
LSTM model is implemented and understood and studied
in [15], where this paper addresses the various limitations of
previous models by the method of combining both the spatial
and temporal information and then bringing out promising
results that outperform traditional as well as the previous
implementations of LSTM models. The GED model with
SST codes, as well as dynamic influence link (DIL), has
been introduced to us by the works in [16], where the paper
highlights that the model is able to capture static information,
along with solving the long-scale dependency problem in
SST prediction. Finally, the authors in [10] propose a Global
Spatiotemporal Graph Attention Network, which leverages
the GNNs and attention mechanisms to properly analyse and
interpret the spatiotemporal dependencies in the SST data and
outperforms existing methods in terms of prediction accuracy.

A. Shortcoming and Limitations of Existing Work

Despite the recent advancements made in SST prediction,
there are still some voids and limitations in the existing works.
These are mentioned as below:

(i) Limited focus on the incorporation of various other
physical oceanographic features as well as environmental
variables which in turn could improve upon the accuracy
of the models as highlighted in [14], where the incorpo-
ration of air and water temperature into a single model
resulted in very accurate SST forecasts by the model.

(ii) Potential long term issues with generalizability and trans-
ferability of models across different geographical regions
and datasets. Since, each of the models cater to one and
only one particular geographical area.

(iii) The need for further development and exploration into
the interpretability of the model and understanding the
underlying physical processes that govern SST variations.

(iv) Challenges in handling missing or sparse data need to be
dealt with more extensively.

Table I presents the contemporary analysis of eight papers
focusing on Sea Surface Temperature (SST) prediction, pro-
viding a comprehensive assessment of the current research
landscape in this field.

B. Key Findings and Achievements

As per the discussion of the literature review, we have
observed the following key findings and achievements in terms
of SST prediction and oceanographic exploration.
(a) The M-convLSTM model [7] takes into consideration,

both the horizontal as well as vertical temperature varia-
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TABLE I
CONTEMPORARY LITERATURE ANALYSIS ON STUDIES ON A FEW SST PREDICTION TECHNIQUES

Domain Serial Number Title of Paper Year Objective Dataset Algorithms and Techniques Used

Oceanography

1 Prediction of Sea Surface Tempera-
ture Using Long Short-Term Mem-
ory [13]

2017 To predict sea surface temperature using LSTM
on short-term and long-term scales

Coastal seas of China Long Short-Term Memory (LSTM)

2 A CFCC-LSTM Model for
Sea Surface Temperature
Prediction [15]

2017 To predict sea surface temperature by combining
temporal and spatial information

China Ocean and Bohai Sea
datasets

CFCC-LSTM

3 An Adaptive Scale Sea Surface
Temperature Predicting Method
Based on Deep Learning With At-
tention Mechanism [16]

2019 To predict SST using a GRU encoder-decoder
model with attention mechanism and dynamic
influence link

NOAA OISST grid data GRU, LSTM, Attention Mechanism

4 Prediction of sea surface temper-
atures using deep learning neural
networks [9]

2020 To compare deep learning LSTM networks with
other techniques for SST prediction

Numerical model products, in situ
measurements, and satellite obser-
vations

Deep learning neural networks, LSTM

5 Prediction of 3-D Ocean Temper-
ature by Multilayer Convolutional
LSTM [7]

2020 To predict 3-D ocean temperature using a model
called M-convLSTM with CNN, LSTM, and
layer stacking

ARGO data Multilayer Convolutional LSTM, CNN,
LSTM

6 Sea Surface Temperature Predic-
tion Approach Based on 3D CNN
and LSTM with Attention Mecha-
nism [8]

2021 To predict sea surface temperature using 3D
CNN, LSTM with attention mechanism, and
XGBoost for feature extraction

SST data from NOAA, selected
SST data from Bohai and South
China Sea

3D CNN, LSTM, Attention Mechanism,
XGBoost

7 Sea Surface Temperature Forecast-
ing With Ensemble of Stacked
Deep Neural Networks [14]

2021 To improve SST prediction accuracy using an
ensemble of stacked deep neural networks

NOAA and Argo datasets Deep Neural Networks (DNNs)

8 Global Spatiotemporal Graph At-
tention Network for Sea Surface
Temperature Prediction [10]

2023 To improve SST prediction accuracy by combin-
ing GNNs with attention mechanisms

NOAA OISST data, datasets from
the Bohai Sea and the South China
Sea

Graph Attention Network, Graph Neural
Networks, Gated Temporal Convolutional
Networks

tions in the ocean, leading to the improvement in accuracy
in 3D ocean temperature predictions.

(b) The approach used in [8] combines 3D CNN as well as
LSTM with the use of an attention mechanism and also
XGBoost for feature extraction, resulting in improved
accuracy, training efficiency, and lower complexity.

(c) Deep learning LSTM networks in [9] have taken a lead
over traditional neural networks after achieving very high
correlation values of around 1.0 for location-specific
forecasts.

(d) LSTM-based models, as proposed in [13], effectively
highlight the temporal relationship in SST data as well
as improving the prediction accuracy.

(e) The incorporation of air and water temperature data into
the model in [14] has led to better prediction accuracy,
suggesting that increasing the number of factors incorpo-
rated into the model could improve accuracy further.

(f) The CFCC-LSTM model introduced in [15] combines
temporal and spatial data, addressing the limitations of
previous plain LSTM models and outperforming tradi-
tional and numerical models.

(g) The GED model that incorporated SST codes as well
as DIL in [16] effectively captures the static information
present in the dataset and solves the long-scale depen-
dency problem, surpassing previous models in accuracy.

(h) The Global Spatiotemporal Graph Attention Network
proposed in [10] utilizes GNNs and attention mechanisms
to capture spatiotemporal dependencies within the SST
data, resulting in higher accuracy compared to previous
and traditional implementations and approaches.

IV. PROPOSED MODEL

The proposed model aims to utilise the Hybrid
Convolutional-LSTM with Transformer (ConvLSTM-
Transformer) model in order for it to predict SST accurately.
This model combines the strengths of the convolutional layers,
LSTM and Transformer architecture to effectively integrate
the spatial and temporal information, while addressing
the identified gaps and limitations within the previous

implementations. A diagram of a standard LSTM model is
depicted in Fig. 1 [17].

Fig. 1. Standard Diagram of LSTM

Fig. 2. Integration of Spatial and Temporal Information in the ConvLSTM-
Transformer Model

A. Methodologies and Algorithms used

1. Convolutional Layers: The model begins with convo-
lutional layers that extract the spatial features from the
input SST data stream. These layers help in capturing the
local patterns as well as correlations within the data.

2. LSTM Layers: The spatially extracted features are then
fed forward into the LSTM layers, which then model
the temporal dependencies in the SST data. Also in
this phase, LSTM can capture sequential patterns as
well as long-term dependencies. The integration of the
Convolutional and LSTM layers, as shown in Fig. 2.

3. Transformer Layers: In addition to the Conv-LSTM
layers, the proposed model incorporates Transformer lay-
ers. Transformers are known to leverage self-attention
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mechanisms to capture the global patterns and long-range
dependencies within the data. The attention mechanisms
in this phase enable the model to focus more on the
important spatial and temporal contexts.

4. Integration of Spatial and Temporal Information: The
ConvLSTM-Transformer architecture integrates the spa-
tial and temporal information with the help of the connec-
tions between the convolutional layers, LSTM layers, and
the Transformer layers. This tight integration enhances
the model’s overall ability to capture both local as well
as global patterns in the SST data. The Architecture of
the proposed ConvLSTM model is depicted in Fig. 3.

Fig. 3. Architecture of the ConvLSTM-Transformer Model

B. Benefits over Previous Implementations

1. Enhancement in Prediction Accuracy: The
ConvLSTM-Transformer model combines the strengths
of convolutional layers, LSTM, and Transformer
architecture to capture the spatial as well as temporal
dependencies more effectively than ever before. By
integrating both spatial and temporal information, the
proposed model has the potential to revolutionarily
improve upon the accuracy of SST predictions compared
to the previous implementations.

2. Comprehensive Modeling of SST Data: The integra-
tion of convolutional layers, LSTM, and Transformers
allows the model to capture spatial, sequential, and global
interactions in SST data. This comprehensive modeling
approach leads to a more holistic representation of data,
resulting in the improvement of prediction performance.

3. Handling Long-Term Dependencies: The ConvLSTM-
Transformer model addresses the limitations of its prede-
cessors associated with long-term predictions. The LSTM
layers and Transformer components are known to excel in
capturing long-range dependencies, enabling this model
to make accurate predictions over extended periods.

4. Improved Generalization: With the conglomeration of
convolutional layers, LSTM, and Transformer, the pro-
posed model can usually generalise well into unseen SST
data. The spatial and temporal information captured by
the model facilitates the better adaptation of the model
to varying oceanic conditions in diverse geographical
regions, leading to improved forecasting capabilities.

V. CONCLUSION AND FUTURE ASPECTS

The review of relevant literature has enabled the dive into
the depths of recent developments in the field of oceanography
and to gain valuable insights into the existing work on SST
prediction. Several models, such as M-convLSTM, CNN-
LSTM with attention, LSTM-based models, CFCC-LSTM,

GED, and Global Spatiotemporal Graph Attention Network,
have been proposed to improve SST predictions by considering
spatial and temporal dependencies, incorporating additional
factors, and leveraging advanced techniques like attention
mechanisms and GNNs.

The key findings highlight the effectiveness of these models
in improving prediction accuracy over time, capturing spatial
and temporal patterns, addressing long-scale dependencies,
and outperforming traditional and numerical models. The
incorporation of additional factors, such as air and water tem-
perature, has shown promise in enhancing prediction accuracy.
Despite these achievements, some limitations persist in the ex-
isting work. These include the limited incorporation of various
physical oceanographic features and environmental variables,
challenges in generalizability across different geographical
regions and datasets, the need for model interpretability and
understanding of underlying physical processes, and sparse
data handling.

To address these limitations, the Hybrid Convolutional-
LSTM with Transformer (ConvLSTM-Transformer) model
for SST prediction is proposed. The model, as depicted in
Fig. 2 and Fig. 3, integrates spatial and temporal information
by combining convolutional layers, LSTM, and Transformer
architecture. This approach enhances prediction accuracy, han-
dles long-term dependencies, and improves generalisation.
The proposed model overcomes the limitations of previous
implementations by incorporating additional factors, providing
a comprehensive modelling approach, and leveraging advanced
techniques.

In summary, the proposed ConvLSTM-Transformer model
offers a promising solution for accurate SST prediction by
addressing the limitations of existing models. This research
opens up avenues for further advancements in SST prediction,
with implications for improved oceanic forecasting, climate
studies, and environmental monitoring. Future directions in-
clude further exploration of incorporating various physical
oceanographic features and environmental variables to enhance
accuracy, developing models with improved generalizability,
enhancing interpretability and understanding of underlying
processes, and addressing challenges in handling missing or
sparse data in historical SST datasets.
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