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Abstract—Human Activity Recognition (HAR) exploits WiFi
signals to offer behavioral sensing for various practical ap-
plications, such as patient monitoring in hospitals, and chil-
dren/elderly monitoring in smart homes. Particularly for med-
ical applications, HAR is of considerable importance. HAR
determines the type of activity precisely and effectively using the
correlation between the Channel State Information (CSI) data
and physical movements. However, various constraints often
make the process challenging for usage in practical systems.
Large feature dimensionality and variable activity signal dura-
tion are the two major difficulties for developing an efficient
HAR framework. Additionally, the frequency components of
the CSI activity signal are time-varying, which makes CSI data
inherently non-stationary. In this work, we present a feature
extraction approach using Discrete Cosine Transform (DCT)
to address the aforementioned issues – we integrate Principal
Component Analysis (PCA) based dimensionality reduction
and a solution to the non-stationarity problem. We assess the
performance of our proposed approach on real data using some
off-the-shelf reference models, such as support vector machine
(SVM), random forest (RF), k-nearest neighbor (KNN), and
convolutional neural network (CNN). Empirical results empha-
size the quality of our proposed feature extraction approach by
showing that even off-the-shelf classification models perform
very well in challenging scenarios.

Index Terms—Human activity recognition (HAR), channel
state information (CSI), principal component analysis, and
discrete cosine transform.

I. INTRODUCTION

Human Activity Recognition (HAR) has many modern
applications, including smart home monitoring and surveil-
lance, intruder detection, patient monitoring in hospitals,
children or elderly monitoring in smart homes, and military
and security applications. HAR offers insightful information
on a person’s behavior and physical health. For instance,
following a certain fitness routine is often a requirement of
treatment for diabetes, obesity, or heart disease. Evidently,
it is helpful to identify activities like walking, running,
and cycling to inform the caregiver about the patient’s
behavior. Similarly, helping individuals with cognitive im-
pairments (e.g., patients with dementia, Parkinson’s disease,
or Alzheimer’s disease) by monitoring for abnormal activities
and thereby preventing undesirable consequences, is another
potential use [1], [2].

There is a multitude of techniques (camera-based and
wearable sensor-based) that are used to recognize human

activity, and new research is continuously improving exist-
ing models [3], [4]. In recent years, using Channel State
Information (CSI) from WiFi signals to identify human
activity has expanded significantly by utilizing the signal
penetration properties [5]. Modern WiFi systems employ
Multiple Input Multiple Output (MIMO) and Orthogonal
Frequency Division Multiplexing (OFDM). The subcarriers
of the OFDM system provide responses to human activity
at various frequency levels. It has been demonstrated that
any movement in an indoor environment has an impact on
the CSI. As a result, differences in the CSI signals may be
used to identify human activities. Additionally, CSI is useful
for activity detection because of its unique ability to reduce
multi-path effects. However, only a few devices, such as the
Intel WiFi 5300 NICs, offer access to the underlying CSI
data [6]. The development of CSI tools has made it possible
to collect CSI data and investigate the relationship between
signals and human activity [7].

The use of routine physical activity monitoring and recog-
nition in the healthcare industry has been considered in
several recent works. Such monitoring systems can assist in
controlling and minimizing the risk of a number of health
disorders; e.g., obesity and cardiovascular disease. Additional
applications for activity monitoring systems include elderly
rehabilitation, fall detection, and smoking cessation. The
majority of activity detection techniques have relied on video,
accelerometer-based data, and the integration of several types
of sensors. However, both the camera-based method (which
has the limitations of requiring line of sight and optimal
illumination) and the wearable sensor method (which is more
accurate and simple but inconvenient and expensive) have the
issue of potentially breaching individual privacy. Wi-Fi-based
HAR systems overcome the aforementioned difficulties by
utilizing the correlations between CSI signal variations and
body motions. In this work, we present an effective HAR
system that i) can be employed in real-time applications,
such as smart hospitals; ii) can outperform existing methods
in terms of robustness and efficiency.

A. Related works

In recent years, researchers have proposed several tech-
niques for CSI-based activity recognition using machine
learning (ML) algorithms. For instance, an antenna selection
method is proposed in [8]. a viable channel selective activity
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recognition (CSAR) system was described in [9]. A simple
deep neural network for HAR is proposed in [10]. To
demonstrate the utility of the Internet-of-Things platform,
an occupancy detection system based on the CSI curve of
human presence is proposed in [11]. A deep recurrent neural
network (RNN)-based HAR system (HARNN) is proposed
in [12]. Another system, MCBAR, uses CSI measurements
to monitor human activities and the generative adversarial
network (GAN) [13]. WiKey and WiGest are two noteworthy
keystroke and gesture recognition approaches, respectively,
that use variations in WiFi signal strength [14], [15]. Finally,
an end-to-end deep subdomain adaptive network for more
fine-grained feature extraction is proposed in [16].

Apart from these, the work presented in [17] transformed
the CSI data into images and used those as the inputs for a 2D
Convolutional Neural Network (CNN) classifier. DeepSeg,
a deep learning-based framework for activity segmentation
that includes a CNN-based segmentation algorithm and a
feedback mechanism is introduced in [18]. An effective HAR
system that is suitable for practical applications is proposed
in [19] called the Principal Component-based Wavelet Con-
volutional Neural Network (or PCWCNN). The segmentation
algorithm is improved based on the feedback calculated from
the outcomes of activity recognition. A Gaussian mixture
model-hidden Markov model (GMM-HMM) is employed
in [20] to describe the CSI feature data of each activity, and
the CSI phase difference expansion matrix is produced as a
more evident activity detection feature.

Despite these intriguing developments in CSI-based activ-
ity recognition algorithms, HAR system development still
has room for improvement and optimization in terms of
resource usage and computational complexity. In this work,
we propose an implementation-oriented feature extraction
technique that significantly improves and streamlines the
performance of existing recognition systems. Our novel
feature extraction approach for an efficient HAR framework
employs two efficient and widely explored algorithms: Prin-
cipal Component Analysis (PCA)-based filtering of activity
information from the subcarriers, and Discrete Cosine Trans-
form (DCT)-based feature extraction, which further reduces
dimensionality while addressing non-stationarity constraints.
We demonstrate that by virtue of a clever feature extraction
approach, even off-the-shelf classification algorithms can
perform superbly for CSI-based activity recognition.

II. PROPOSED SYSTEM ARCHITECTURE

The activity recognition system employing the proposed
DCT-based feature extraction approach can be divided into
four major steps, as shown in Figure 1. We discuss the steps
in detail in the following.

A. Data Acquisition

The input data at the receiver is collected as a T ×R×S-
dimensional complex-valued tensor, where T is the number
of transmitting antennae, R is the number of receiving
antennae, and S is the number of OFDM subcarriers. Let
Xi ∈ RD×1 denote the i-th CSI stream (i.e., the amplitude
data of the i-th subcarrier of the CSI), where D is the length
of the CSI stream. We can arrange all these CSI streams to
form the matrix X = [X1, X2, · · ·XN] ∈ RD×N where

N is the total number of subcarrier streams. For our case,
T = 1, R = 3, and S = 30, and therefore, we have N = 90
CSI streams.

B. PCA-based Noise Reduction and Dimensionality Reduc-
tion

Raw CSI data contain noise and outliers. Therefore, us-
ing CSI data in activity detection algorithms requires the
application of signal processing and denoising techniques
to be employed on the raw CSI streams. An approach for
reducing noise and solving the issue of integrating CSI
streams is CARM [4], which applies PCA on CSI streams.
In the following, we review the steps in brief: after ex-
traction of CSI as the matrix X ∈ RD×N , we can find
the correlation estimate from the sample auto-correlation
matrix R = XTX ∈ RN×N . The symmetric positive semi-
definite matrix R can be decomposed as R = VΛVT [21],
where V = [v1,v2, · · · ,vN ] ∈ RN×N , is the unitary
matrix containing the eigenvectors of R, and Λ ∈ RN×N

is the diagonal matrix containing the eigenvalues λk of R.
Typically, the maximum eigenvalue is associated with the
signal component with the largest variance, whereas smaller
eigenvalues correspond to the noise subspace. Now, it is
possible to project the data onto the subspace spanned by
the eigenvectors to identify the components in their signal
subspace since the eigenvectors of R are orthogonal to one
another. The k-th principal component can be obtained as
hk = Rvk [4]. While the first principal component h1

contains the majority of data variability, it also catches the
burst noise that is present in all CSI streams. Additionally,
the first principal component shows the most presence of
noise brought on by internal state fluctuations [4]. The
first principal component and the ones corresponding to
the smallest eigenvalues can be ignored to effectively filter
out the majority of the noise. In this way, dimensionality
reduction will also be accomplished. In this paper, we only
used the second and third principal components (h2 and h3),
discarding the others.

C. DCT-based Feature Extraction

For a sequence of length M , the DCT coefficients can be
found from the following transformation [22],

F (u) = α(u)

M−1∑
x=0

f(x) cos

[
π(2x+ 1)u

2M

]
,

for u ∈ {0, 1, 2, · · · ,M − 1}. Here, α(u) is defined as,

α(u) =


√

1
M , if u = 0√
2
M , if u ̸= 0.

The first coefficient corresponds to the sequence’s aver-
age value, whereas the following coefficients correspond
to higher frequency components. We choose DCT since it
provides packing the input data into “as few coefficients
as possible”, and is very efficient. As a result, small-valued
and high-frequency coefficients can be removed without the
reconstructed signal becoming qualitatively distorted. DCT
offers excellent energy compression for highly correlated
signals [22]. That is, the majority of the signal’s information
is compressed by DCT into a relatively small number of
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Fig. 1: Framework of the proposed DCT-based activity recognition system

(a)

(b)

(b)

Fig. 2: (a) CSI data (b) DCT coefficients (c) Reconstructed
signal

Fig. 3: DCT-based feature extraction using the sliding win-
dow method. An overlap of 50% is used. The DCT coeffi-
cients are concatenated to form the final feature vector.

coefficients [23]. Additionally, DCT enables us to manage
the fluctuating nature of the signal length of the CSI data.
The removal of high-frequency components also helps the
reduction of noise since activity features are most evident in
the signal’s low-frequency components.

The data compression and feature extraction process that

we employ in this work is depicted in Figure 2. The signal
with 120 samples is reconstructed leveraging only 40 DCT
coefficients. The reconstructed signal resembles the original
signal sufficiently well, although being reconstructed from
a smaller number of coefficients. However, the frequency
components of the CSI data are time-varying. Hence, we
propose a modified DCT-based feature extraction approach
in this work, which we summarize in the following. The
activity signals x(n) is divided into multiple shorter, equal-
length sequences, which are assumed to be stationary. A
sliding window of appropriate width is used to partition the
signal into several frames of the same length. Additionally,
succeeding signal frames overlap by a certain percentage in
order to optimize the usage of information. To reduce spectral
leakage, a data window, such as the Kaiser window, is used
with the signal frames. The DCT coefficients of each frame
are then computed and arranged to generate a feature vector
corresponding to the CSI signal.

The i-th frame is obtained by assuming that consecutive
sequences are offset by D points and that each sequence
is of length L. That is, xi(n) = x(n + iD), for n ∈
{0, 1, · · ·L − 1}. Let Fi represent the DCT coefficients of
xi(n), and NC represent the number of components retained
after transformation. The feature vector from a signal of
length M will have KNC elements if the signal is segmented
into K parts. The feature vector length KNC can be shorter
than M by selecting appropriate K and NC values. In
Figure 3, we illustrate the working principle of this method.
Recall that we propose to use only the second and third
principal components to form the feature vectors, and use
that in the classification stage.

D. Activity Classifier
We emphasize that the primary contribution of this work is

the proposed feature extraction method. To demonstrate the
quality of the extracted features, we choose to use off-the-
shelf classifiers for evaluating the activity classification per-
formance. More specifically, the performance of the proposed
feature extraction method was evaluated using the following
state-of-the-art reference models: Support Vector Machine
(SVM), Random Forest (RF), k-nearest neighbor (KNN), and
1-dimensional convolutional neural network (CNN). We used
SVM with the Radial Basis Function (RBF) kernel and the
parameter γ that controls the influence of individual points
on the overall process. C, the regularization parameter, was
set to 11, and the regularization was adjusted to be inversely
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Fig. 4: Effect of number of subcarriers on the performance
of different approaches using DCT feature extraction across
all the activities of an individual

proportional to C. For RF, the maximum depth was set to 20
and the number of trees was set to 200. The L2-norm was
utilized as the distance measure in the KNN method, and the
value of k was set to 3. The 1D-CNN model accepts a 128-
element vector as input and returns a vector with probabilities
for each possible activity type. Each of these classifiers was
a 16-class classifier. Before training the models, 20% of the
data was reserved as the test set, and the rest was used for
training.

III. EXPERIMENTAL RESULTS

Dataset: In this paper, we use the publicly available WiAR
data set for activity recognition [24]. WiAR consists of
sixteen activities, which can be divided into three main
categories depending on the body parts associated, as shown
in Table I. The CSI data are acquired for three-receiver
antennae and one transmitter antenna. The WiAR dataset
includes data from three different locations and heights. The
activities are performed by ten volunteers, and 30 samples
were taken from each volunteer. We choose this dataset
for demonstrating the effectiveness of our proposed feature
extraction since it consists of a variety of activities performed
by different volunteers at different distances and heights. We,
therefore, believe this dataset provides good representative
scenarios for real-world use cases and applications. Before
training the models, 20% of the data was reserved as the test
set, and the rest was used for training.
Effect of Number of Subcarriers: The impact of the
number of subcarriers (S) on the performance of DCT
feature extraction-based activity recognition is presented in

TABLE I: Activity Types

Types Activities

Upper Body Activities

Horizontal arm wave, Two hand wave,
Toss paper, Draw kick, Phone,
Draw X, Handclap, High arm wave,
Drink water, High throw

Lower Body Activities Forward kick, Side kick
Whole Body Activities Squat, Sit down, Bend, Walk
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(b) PCA-based integration

Fig. 5: Effect of a number of windows on the performance
of DCT feature extraction.

Figure 4. We observe that the performance of the DCT
feature extraction method improves as the number of sub-
carriers increases. The best overall result for DCT feature
extraction is for S = 30. For SVM, S = 15 to 25
produces similar results. The best outcome for RF is when we
choose S = 15; increasing the number of subcarriers above
this value negatively affects performance for RF. For CNN,
accuracy grows approximately linearly as S increases. The
maximum accuracy is 94%, which is obtained using CNN.
Effect of Number of Windows: In Figure 5, we show
how the number of windows (or window size) impacts the
performance of DCT feature extraction. The performance of
CNN is always better in comparison to that of others. The
dominance of CNN for PCA-based integration is even more
pronounced. When all subcarriers are being used, however,
the difference in performance among the reference models
is small. The difference is negligible for 20 windows. With
increasing the number of windows, accuracy improves for
both PCA and all subcarrier scenarios. The maximum ac-
curacy is 98%, which is obtained for PCA-based integration
with CNN. As the number of windows increases, finer details
become visible, and thereby accuracy increases.
Effect of Distance: In Figures 6(a) and (b), we show
the effect of three distances: 1 m, 3 m, and 6 m on the
performance of activity recognition. For CNN, the results are
the most consistent. Nevertheless, accuracy increases with
distance for all subcarriers. We observe that the accuracy
while using all subcarriers and the PCA-based integration
is the highest for 6 m distance. This is contrary to the
intuition that the accuracy of activity recognition declines
with increasing distance [25]. We believe this is dataset-
specific.
Effect of Height: Finally, the WiAR dataset contains a range
of different height data, since different height data connect
to diverse body parts. Lower body activities correspond to
a height of 60 cm, the whole body to a height of 90 cm,
and upper body activities to a height of 120 cm. In Figures
6(c) and (d), we illustrate the accuracy of the reference
models for three distinct heights. The accuracy of CNN
for all subcarriers is unexpectedly low, which highlights the
excess noise at various subcarrier levels for height data. Due
to the poor quality of the activity data, the KNN, SVM, and
RF performances are below average. In the majority of the
cases, accuracy for PCA-based integration is at its highest
at 90 cm, indicating a stronger correlation between all body
part movements and the WiFi signal.
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Fig. 6: Effect of distance and height on the performance
of different approaches using DCT feature extraction (a)
All subcarriers (Distance) (b) PCA-based integration (Dis-
tance) (c) All subcarriers (Height) (d) PCA-based integration
(Height)

IV. CONCLUSION

In this work, we proposed an efficient feature extraction
approach that is suitable for real-time HAR systems by
utilizing commodity WiFi devices. Such systems are use-
ful for noninvasive and device-free HAR applications, e.g.
smart hospitals and elderly monitoring, and are advantageous
compared to other forms of HAR systems because of the
rapid growth of ubiquitous Wi-Fi technologies. We proposed
a novel DCT-based feature extraction technique that handles
the non-stationary nature of CSI data, and a PCA-based
technique to reduce noise and dimensionality. A number
of off-the-shelf classification algorithms were employed to
thoroughly investigate the quality of the proposed feature
extraction approach on real data. When the PCA-based inte-
gration is compared to the approach utilizing all subcarriers,
it is found that the PCA-based method is superior, since
it yields improved prediction accuracy and dimensionality
reduction with quicker run-time. Indeed, the quality of the
extracted features is highlighted by the fact that even off-the-
shelf classifiers can perform very well by virtue of feature
extraction.
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