
  

  

Abstract— To build a reliable system, anomaly detection is 
the principal task for ensuring the system's security. However, 
the complexity of systems and software has increased over 
time. As a result, the likelihood of system failures and 
vulnerabilities has also grown. For this reason, employing 
manual anomaly detection approaches is impractical. This 
work proposes the use of a Convolutional Neural Network for 
log-based anomaly detection and enhances a log parsing 
method through parameter entity labeling. We have chosen 
the ThunderBird and BlueGene/L datasets for our 
experiments, employing a down-sampling technique to 
address data imbalance issues and reduce model training time. 
The results show that when comparing the detection outcomes 
of models trained with the down-sampled training dataset and 
models trained with the full training dataset (without using 
down-sampling), the models trained with the full training 
dataset exhibit higher recall, while their precision and 
specificity remain comparable. Additionally, the results 
indicate that our approach demonstrates slightly better 
detection performance than the previous log parsing method. 
Precision, recall, and specificity reach 0.9999, 0.9933, and 
0.9914, respectively, when experimenting with the 
ThunderBird dataset. 
 

Keywords — Anomaly Detection, Log, CNN, Parameter 
Entity Labeling 

I. INTRODUCTION 

Computer systems are essential for many critical 
technologies today. However, as systems and software have 
become more complex, the likelihood of system failures and 
vulnerabilities has increased. These problems can lead to 
system crashes or attacks by malicious actors. Anomaly 
detection is a technique that can help identify these 
vulnerabilities by looking for anomalies in system behavior. 
By identifying potential problems early, anomaly detection 
can help to reduce the likelihood of system failures and 
vulnerabilities. Due to the volume and velocity of data 
generated by complex systems, the manually anomaly 
detection approaches become nearly impossible. 

System logs are a sequence of timestamped strings that 
are generated by computer systems. They are present in 
almost all computer systems and report information about 
events that occur during system operation. System logs store 
information about events and the system's status at a specific 
timestamp. This makes them a valuable source of 
information for anomaly monitoring. System logs can be 
used to identify unusual or unexpected activity, which can 
be a sign of a potential security threat. 

One of challenges in this field of study is insufficiency 
of abnormal data. This leads to a data imbalance problem, 
where there are many more normal logs than abnormal logs. 
 

 

Some datasets do not even have labels [1, 2]. This creates 
barriers to supervised learning. Unsupervised and semi-
supervised learning have thus received more attention in this 
field of study. However, not all deep learning models 
support unsupervised learning. As a result, many studies 
have focused on semi-supervised learning that learns from 
only labeled normal data and tests by normal and abnormal 
data [3]. Additionally, there are some studies that use 
sampling techniques for adjusting ratio of normal and 
abnormal data to make the data balance [4, 5]. 

Another challenge of log-based anomaly detection is the 
diversity of log messages. Log messages are constantly 
changing, and new logs are generated to represent 
unprecedented events. Additionally, the system's behavior 
can change any time depending on the constantly changing 
environment and situation. Furthermore, different threats 
make this issue more difficult to deal with. The major key 
that various studies employ to address this issue is to 
transform words in log content to numeric representation. 
The most common representation is semantic vector. 
Semantic vector is a common technique in the field of 
Natural Language Processing (NLP) for embedding the 
information of a word or message to numeric form as a 
vector. This vector represents the meaning and context of 
that word or message. For example, Word2Vec [6]. 

In this work, we proposed a log-based anomaly detection 
method using a Convolutional Neural Network (CNN) 
model. CNN models have the advantage of having a low 
number of hyperparameters and training time, as well as the 
ability to reduce the dimension of the input, making the 
model lightweight. We also proposed an approach to 
develop a log feature extraction method before ingesting the 
data to the model by improving the log parsing method, 
Drain [7]. Instead of displacing the parameters in the log as 
previous method, we handle parameters by replacing them 
with their semantic entity such as replacing “10.251.42.84” 
with “<IP>”. This method is able to keep more context and 
semantic information of the logs than previous method. We 
trained and evaluated the proposed model using the 
ThunderBird and BlueGene/L dataset [8]. 

II. RELATED WORKS 

A. Anomaly Detection 
Anomaly detection is the task of finding rare or 

unexpected events in data stream. These events are often 
referred to as abnormal events. Anomaly detection can be 
used to discover new knowledge in data, and it is essential 
for a variety of tasks, especially those that require immediate 
response [9]. In recent years, anomaly detection has become 
increasingly important for building secure and reliable 
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systems. This is because systems are becoming increasingly 
complex and the volume of data that they generate is 
growing rapidly. Rule-based anomaly detection methods are 
no longer sufficient for these complex systems. Machine 
learning models are now being used for anomaly detection. 
They can be divided into two main approaches: supervised 
learning and unsupervised learning. 

Supervised Learning – The model is trained on labeled 
data. Liang et al. [10] investigated anomaly in high 
performance computer system using time series data by 
employing support vector machines (SVMs), and Peter et al. 
[11] applied logistic regression to estimate the likelihood of 
an event being anomalous.  

Unsupervised Learning – The models do not require 
labeled data to train. This makes them suitable for real-world 
environments where labeled data may be unavailable. Xu et 
al. [12] proposed using principal component analysis (PCA) 
for anomaly detection in distributed computing systems. Lin 
et al. [13] designed an online anomaly detection system that 
uses clustering models. 

B. Deep Learning for Log-based Anomaly Detection 
In recent years, there has been a growing interest in using 

deep learning techniques for anomaly detection in system 
logs because of its success in text and image recognition. 
One of the first deep learning models for anomaly detection 
in log data was DeepLog [14], which was proposed by Du 
et al. in 2017. DeepLog uses a recurrent neural network 
(RNN) with long short-term memory (LSTM) units to learn 
the sequence of log messages. DeepLog achieved F1-score 
of 0.96 for HDFS dataset and 0.98 for OpenStack dataset. 

Zhang et al. [15] proposed LogRobust, which is an RNN 
model with Bi-directional Long Short-Term Memory (Bi-
LSTM) along with attention mechanism for dealing with 
mutability of logs and events sequence. It reached precision 
of 0.92 and recall of 0.97 for HDFS dataset. Meng et al. [16] 
proposed LogAnomaly, which is an LSTM model for 
detecting anomalies in the sequence of log keys. Moreover, 
they also proposed template2vec embedding method for 
transforming log keys to vectors. The evaluation result by 
testing with BlueGene/L (BGL) dataset reached precision 
and recall of 0.97 and 0.94 respectively. Studiawan et al. 
[17] employed an artificial neural network applied Gate 
Recurrent Unit (GRU) for sentiment analysis from logs of 
operating system which achieved a high F1-score of 0.99 for 
BGL dataset. 

As mentioned above, RNNs have been shown to be 
effective for anomaly detection in log data but trending off 
accuracy against complexity that affect to expanding 
number of parameters and training time. Even RNNs are 
effective in text classification, structure of log is different to 
regular text and the nature of log messages is not longer 
enough to maximize RNNs performance [18]. While CNNs 
are more lightweight models. Generally, CNNs are 
employed for image classification. However, Yoon [19] 
proposed an application of CNNs for text classification. In 
addition, Rie et al. [20] suggested that CNNs are interesting 
option for dealing with short text. 

The studies which employed CNNs for log-based 
anomaly detection also have outstanding performance as 
RNNs.  Siyang et. al [18] applied CNNs for NLP with 
logkey2vec to detect abnormal log in big data systems. Their 

model achieved precision and recall of 0.97 and 0.99, 
respectively, for the HDFS dataset. Cheansunan et al. [21] 
proposed a similar approach but they also compared the 
training time of their model to RNNs. Their model was able 
to achieve the same accuracy as RNNs, but it took 2-3 times 
less time to train. Hashemi et al. [22] proposed OneLog, 
which is a CNN model for end-to-end anomaly detection. It 
compresses log parsing, embedding, and classification into 
one model. OneLog achieved precision and recall of 0.99 for 
the HDFS dataset. Gu et al. [23] proposed FLOGCNN, 
which is a CNN model that supports federated learning. This 
can be helpful for protecting the privacy of data. 

C. Log Preprocessing 
Logs are sequences of text that report the status of a 

system and the events that occur in it at a particular 
timestamp. As logs are unstructured data, they need to be 
preprocessed before they can be ingested into a model. There 
are two main approaches to log preprocessing. 

Log Parsing - This approach identifies and displace the 
variable and parameter parts of the log message, which are 
mutable depending on situation and operation of system. 
The remaining constant parts are then kept. The outputs are 
the log key, which is a unique event templates, and a list of 
the extracted parameters from that log. Zhu et al. [24] 
implemented a tool that automates log parsing using various 
algorithms such as Drain [7] and Spell [25]. Many recent 
studies have use log parsing, including the popular works 
DeepLog by Du et al. [14], LogRobust by Zhang et al. [15], 
and LogAnomaly by Meng et al. [16]. 

Log Tokenization – This approach separates word or 
token in the log message into a list of tokens. The tokens are 
typically separated by whitespace. This method usually 
includes turning all characters to lowercase, remove special 
character and stop words. This method is more flexible than 
log parsing, as it can handle logs that do not follow a fixed 
template. However, it can also lose some of the meaning of 
the original log message. Logsy proposed by Nedelkoski et 
al. [26] used tokenization before embedding tokens to 
vectors to avoid the limitations of existing log parsing 
methods at that time. 

Some studies have used a combination of log parsing and 
tokenization. Catillo et al. [27] proposed a method to 
estimate anomaly score of each token in log key before 
ingesting to autoencoder for classifying by estimating the 
reconstruction error, and FLOGCNN by Gu et al. [23] also 
using combination method. 

After the logs have been preprocessed, they are typically 
converted into numeric representations using word 
embedding technique. Word2vec [6] is a popular word 
embedding model, which is a technique that uses a pre-
trained model to transform words or phrases into semantic 
vectors. 

III. METHODOLOGY 

A.  Log Data Preparation 
The first step in the preprocessing pipeline is to split the 

dataset into K sets of training sets and testing sets using the 
K-Fold method. This helps to handle random factors and 
ensure that the results are consistent. The experimental 
results of all sets are then averaged. 
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The next step is to preprocess the log data. We use a 
combination method that combines log parsing by Drain [7] 
with tokenization. For conventional log parsing methods, the 
variable and parameter parts are replaced with placeholders. 
This means that the original information in these parts is lost. 
However, in this work, we propose a method that keeps 
certain information of those parts by replacing them with 
their semantic entities. For example, the IP address 
"172.16.96.116" would be replaced with "<IP>".  The 
parameter entities that applied in our method are <IP>, 
<Number>, <Hexadecimal>, <RT>, <Path>, <Core>, 
<similar_prev_pattern>, <Identifier>, and <Node>. These 
entities represent different types of information that can be 
found in log data. By preserving more semantic information 
in the log data, our method is able to better understand the 
meaning of the log data.  

The log keys are then constructed as log sequences by 
concatenating the l log lines preceding the observed line, 
sorted by timestamp. If the dataset contains N log lines, then 
the number of log sequences is 𝑁 − 𝑙 sets. To deal with the 
imbalance of normal and abnormal data, we apply down 
sampling technique to reduce the ratio of normal class to 
abnormal class for balancing the data. We group the same 
log sequence and measure each group’s size. If the observed 
line (last line) of that group is labeled as an anomaly and the 
size of that group is larger than a predefined threshold, then 
we randomly pick 𝜌 ∙ 𝑛(𝐺!)	log sequences in that group, 
where 𝜌 ∈ (0, 1) is the down sampling ratio and 𝐺! is 𝑖-th 
log sequence. 

After that, the log sequences are tokenized into token 
sequences using regex tokenization. The down sampled 
datasets are used only for training the model, but the full 
training datasets are used for evaluation. Then, each token in 
the token sequences is embedded to a d-dimensional 
semantic vector using Word2Vec. If there are n total tokens 
in the log sequence, then all 𝑛 vectors are vertically 
concatenated to form a 𝑛 × 𝑑 dimensional matrix, which is 
the input for the model. 

 
Figure 1.  Tree structure of Drain for clustering log key. 

B. Log parsing and Parameter Entity Labeling 
In this work, we applied Drain [7], an open source1 

implemented by Logpai. Drain is a log parsing algorithm 
employing regular expression (regex). We customized 

 
1 https://github.com/logpai/logparser/tree/master/logparser/Drain 

some parts of Drain’s source code for Parameter Entity 
Labeling (PEL). Drain clusters log keys by applied tree 
structure as shown in Figure 1. Where the keys of root’s 
child nodes are number of tokens in log key and the keys of 
deeper level nodes are token appear in 1st ,2nd, 3rd, …, dth 
position of log key depending on that node’s depth. If the 
token of log key is not matched with any node’s keys at its 
position depth, the new node will be created using that 
token as its key. At the leave nodes of the tree, they contain 
set of log keys which are in the same cluster. After traversal 
to the leave node, the input log key is compared with all log 
keys in the leave node’s cluster by estimating similarity 
using (1) formular to find most similar log key in that 
cluster: 
                                𝑆(𝑇", 𝑇#) = 	

$(&!∩&")
$(&!)

               (1) 

Where 𝑇$ =	 {𝑡𝑜𝑘𝑒𝑛! 	𝜖 log 𝑘𝑒𝑦$} ,which  𝑇" and 𝑇# 
must have the same size. 

C. Word Embedding 
To transform log data into numerical representations, 

which are appropriate for ingesting to the model, we 
employed Word2Vec [6], a pre-trained model for 
embedding words into semantic vectors. We fine-tuned the 
Word2Vec model to enable it learn words in log massages 
that do not exist in the model’s vocabulary. We did this by 
using Continuous Bag of Words (CBoW), an algorithm for 
training the model. The model learns by predicting the 
observed word using the words around that word. 

D. Anomaly Detection Model 
In this work, we applied a CNN model for text 

classification that was proposed by Yoon [19]. Figure 2 
show the architecture of the CNN model. 

 

Figure 2.  Architecture of CNN model applied for text classification. 

Determined a row vector �⃑�! ∈ ℝ) is a 𝑑-dimensional 
semantic vector of 𝑖-th token in the token sequence of 
𝑁	lines of log. Where that token sequence contains total 𝑛 
tokens and defined matrix that is constructed by vertically 
concatenating all vectors of that token sequence. 

 𝑋":$ = �⃑�"⨁�⃑�#⨁𝑥+⨁…⨁𝑥$     (2) 

Where ⊕ is vertically concatenating operation and 
determined 𝑋!:!,- ∈ ℝ(-,")×) refers to matrix constructed 
by concatenating �⃑�! , �⃑�!,", 𝑥!,#, … , 𝑥!,- vertically and 𝑚! ∈
ℝ is features extracted from convolution when applying 
kernel 𝑊 ∈ ℝ/×) with 𝑋!:!,/0" and represent each row of 
𝑊 as 𝑤JJ⃑ ! ∈ ℝ) , so that: 

𝑚! = 𝑓L∑ 𝑤JJ⃑ 1," ∙ �⃑�!,1/0"
123 + 𝛽P     (3) 
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Defined 𝛽 ∈ ℝ is bias and 𝑓 is activation function. 𝑚! is 
determined by applied kernel on 𝑋":$ at each area in 
{𝑋":/ , … , 𝑋$0/,":$} to build the feature map. 

𝑚""⃑ = [𝑚!, 𝑚", … ,𝑚#$%&!]      (4) 

Where 𝑚JJ⃑ ∈ ℝ$0/," is feature map, then carry it to max-
over time pooling layer to extract highest value feature of 
each feature map. 

𝑚Q = 𝑚𝑎𝑥{𝑚JJ⃑ }        (5) 

Finally, these features are carried to Fully Connected 
(FC) layer with SoftMax as an activation function and the 
output is the probability of each class (in this case is 
probability to be normal and abnormal). 

𝑦4Q = 𝜎L∑ 𝑐!- ∙ 𝑚Q--2" +	𝛽56P!    (6) 

Where 𝑚Q- is output from max pooling feature map of 
𝑗-th kernel and 𝛽56 is bias of FC layer and σ(x)! is SoftMax 
function of class 𝑖. 

To train the model, we employed Adam as a model 
optimizer and cross-entropy as a loss function. We also 
determined the weight of each class to deal with the class 
imbalance problem. 

E. Evaluation 
To evaluate the performance of the predictive model, we 

used precision, recall, and specificity. F1-score was 
employed to show the overview of model predictive 
accuracy. We used two datasets for the experiments, 
Thunderbird and BlueGene/L (BGL) dataset, which contain 
logs of high-performance computer [8]. 

F. Experimental Scope and Setting 
In this work, we investigated the impact of down 

sampling normal data and comparing between conventional 
log parsing method and log parsing with parameter entity 
labeling method on the predictive performance of the model.  
We down sampled normal data with the condition that the 
log sequence group is normative group, and its size is larger 
than the 90th percentile of all groups size. We employed 
Word2Vec pretrained by Google News 300, fine-tuned at 10 
epochs, and trained the CNN model at 5 epochs with a 
learning rate of 0.001. The overview of the proposed method 
is shown in Figure 3.  

 
Figure 3.  Overview of the proposed method. 

IV. EXPERIMENTAL RESULTS 

The experimental results were divided into two sections. 
The first section presents the results of anomaly detection 
with down sampling normal data. The second section 
presents the results of anomaly detection compared between 
conventional log parsing and log parsing with parameter 
entity labeling. The ThunderBird and BGL datasets were 
split by 3-Fold method as shown in Table I and Table II. 

TABLE I.  NUMBER AND PERCENTAGE OF NORMAL AND ABNORMAL 
LOG SEQUENCES OF EACH FOLD REGARDING TO THUNDERBIRD 

ThunderBird Number of Data 
Fold-1 Fold-2 Fold-3 

Training dataset 
Normal data 6,313,763 6,500,297 6,428,604  
Abnormal data 336,321 149,787 221,480  
Total 6,650,084 6,650,084 6,650,084 
Testing dataset 
Normal data 3,307,567 3,121,033 3,192,726 
Abnormal data 17,473 204,007 132,314 
Total 3,325,040 3,325,040 3,325,040 

TABLE II.  NUMBER AND PERCENTAGE OF NORMAL AND ABNORMAL 
LOG SEQUENCES OF EACH FOLD REGARDING TO BGL 

BlueGene/L Number of Data (Percentage) 
Fold-1 Fold-2 Fold-3 

Training dataset 
Normal data 2,888,228  2,821,222  3,020,606  
Abnormal data  254,097   321,103  121,718  
Total 3,142,325 3,142,325 3,142,324 
Testing dataset 
Normal data 1,476,798  1,543,804  1,344,420 
Abnormal data   94,362   27,356 226,741 
Total 1,571,160 1,571,160 1,571,161 

A. Result of Anomaly Detection with Down Sampling 
Normal Data 
We down sampled normal data with three ratios: 30%, 

35%, and 40%. We evaluated the anomaly detection model 
by the four metrics, averaged from 3-Fold dataset. 

The results in table III and table IV showed that down 
sampling normal data did not improve the predictive 
performance of the model. It aggravated model’s accuracy 
to predict normal data, as evidenced by the decreasing recall 
when the normal data was decreased. Precision and 
specificity were only slightly affected. 

TABLE III.  PREDICTIVE PERFORMANCE RESULTS OF ANOMALY 
DETECTION WITH DOWN SAMPLING REGARDING TO THUNDERBIRD 

ThunderBird’s training dataset 
Ratio Precision Recall Specificity F1-score 

30% 1.0000 
(±0.0000) 

0.9527 
(±0.0267) 

0.9998 
(±0.0001) 

0.9756 
(±0.0140) 

35% 0.9999 
(±0.0001) 

0.9321 
(±0.0655) 

0.9982 
(±0.0017) 

0.9636 
(±0.0359) 

40% 1.0000 
(±0.0000) 

0.9863 
(±0.0017) 

0.9992 
(±0.0001) 

0.9931 
(±0.0009) 

100% 0.9991 
(±0.0012) 

0.9986 
(±0.0012) 

0.9834 
(±0.0220) 

0.9989 
(±0.0003) 

ThunderBird’s testing dataset 
30% 1.0000 

(±0.0000) 
0.9190 

(±0.0572) 
0.9986 

(±0.0017) 
0.9569 

(±0.0308) 
35% 1.0000 

(±0.0000) 
0.9107 

(±0.0990) 
0.9982 

(±0.0022) 
0.9503 

(±0.0562) 
40% 1.0000 

(±0.0000) 
0.9883 

(±0.0084) 
0.9985 

(±0.0012) 
0.9941 

(±0.0043) 
100% 0.9999 

(±0.0000) 
0.9933 

(±0.0094) 
0.9914 

(±0.0112) 
0.9966 

(±0.0047) 
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TABLE IV.  PREDICTIVE PERFORMANCE RESULTS OF ANOMALY 
DETECTION WITH DOWN SAMPLING REGARDING TO BGL 

BlueGene/L’s training dataset 
Ratio Precision Recall Specificity F1-score 

30% 0.9922 
(±0.0107) 

0.5699 
(±0.3203) 

0.9220 
(±0.1079) 

0.6587 
(±0.3113) 

35% 0.9998 
(±0.0002) 

0.4920 
(±0.3726) 

0.9993 
(±0.0003) 

0.5737 
(±0.3485) 

40% 0.9997 
(±0.0003) 

0.4782 
(±0.3517) 

0.9990 
(±0.0009) 

0.5663 
(±0.3437) 

100% 0.9988 
(±0.0010) 

0.8121 
(±0.0956) 

0.9873 
(±0.0099) 

0.8926 
(±0.0598) 

BlueGene/L’s testing dataset 
30% 0.9994 

(±0.0006) 
0.5308 

(±0.3214) 
0.9913 

(±0.0069) 
0.6375 

(±0.2683) 
35% 0.9982 

(±0.0023) 
0.4457 

(±0.3802) 
0.9741 

(±0.0358) 
0.5228 

(±0.3570) 
40% 0.9993 

(±0.0006) 
0.2771 

(±0.1781) 
0.9961 

(±0.0047) 
0.4006 

(±0.2384) 
100% 0.9989 

(±0.0012) 
0.8704 

(±0.0868) 
0.9801 

(±0.0178) 
0.9279 

(±0.0499) 

B. Result of Anomaly Detection with Log Parsing and 
Parameter Entity Labeling 
The results of log parsing and parameter entity labeling 

with ThunderBird dataset were defective. For some 
parameters or some parts in the log content were not 
parameter part, they were labeled as 
“<similar_prev_pattern>”. This issue was caused by 
underdetermining the max depth or max child node of the 
tree and incomplete customization of Drain to support 
parameter entity labeling.  The sample of pestilent log keys 
caused by this issue are showed in table V. 

However, this issue was solved for BGL dataset2  by 
executing parameter entity labeling process again with only 
the parts that were labeled as “<similar_prev_pattern>”. 

The table VI and VII show the anomaly detection 
predictive performance of model trained by the ThunderBird 
and BGL datasets, respectively, comparing between using 
the conventional log parsing method by Drain and the 
proposed log parsing method along with parameter entity 
labeling by customized Drain. 

C. Comparing Proposed Approach with Other State-Of-
the-Art Works 

In this section, we compare the predictive performance of 
our proposed approach with other state-of-the-art works 
that apply deep learning for anomaly detection. We selected 
works that used the ThunderBird and BGL datasets as we 
did, which are Farzad et al. [28], Sasho et al. [26], Guo et 
al. [29], and Van-Hoang et al. [30]. The results are shown 
in Table VIII and Table IX. 

TABLE V.  SAMPLES OF PESTILENT LOG KEYS OF THUNDERBIRD 
CAUSED BY DEFECTIVE LOG PARSING WITH PARAMETER ENTITY 

LABELING METHOD 

Original log 
content Without PEL With PEL 

data_thread() got 
not answer from any 
[Thunderbird_A6 ] 
datasource 

data_thread() got 
not answer from 
any <*> 
datasource 

data_thread() got not 
answer from any 
<similar_prev_pattern> 
datasource 

synchronized to 
1 0 . 1 0 0 . 3 0 . 2 5 0 , 
stratum 3 

synchronized to 
<*> stratum <*> 

synchronized to 
<similar_prev_pattern> 
stratum <Numbers> 

 
2 The mentioned issue has not been solved for ThunderBird dataset because ThunderBird is 

enormous, it requires the long processing time thus we could not complete it on our schedule. 

TABLE VI.  PREDICTIVE PERFORMANCE RESULTS OF COMPARING 
BETWEEN CONVENTIONAL LOG PARSING AND LOG PARSING WITH 

PARAMETER ENTITY LABELING REGARDING TO THUNDERBIRD 

ThunderBird dataset 
Conventional log parsing method 

Dataset Precision Recall Specificity F1-score 
Train set 0.9983 

(±0.0022) 
0.9882 

(±0.0165) 
0.9679 

(±0.0411) 
0.9931 

(±0.0078) 
Test set 0.9998 

(±0.0001) 
0.9831 

(±0.0233) 
0.9785 

(±0.0262) 
0.9912 

(±0.0120) 
Log parsing with parameter entity labeling method 
Train set 0.9991 

(±0.0012) 
0.9986 

(±0.0012) 
0.9834 

(±0.0220) 
0.9989 

(±0.0003) 
Test set 0.9999 

(±0.0000) 
0.9933 

(±0.0094) 
0.9914 

(±0.0112) 
0.9966 

(±0.0047) 

TABLE VII.  PREDICTIVE PERFORMANCE RESULTS OF COMPARING 
BETWEEN CONVENTIONAL LOG PARSING AND LOG PARSING WITH 

PARAMETER ENTITY LABELING REGARDING TO BGL 

BlueGene/L dataset 
Conventional log parsing method 

Dataset Precision Recall Specificity F1-score 
Train set 0.9818 

(±0.0251) 
0.5129 

(±0.3320) 
0.9284 

(±0.0898) 
0.6138 

(±0.2810) 
Test set 0.9505 

(±0.0648) 
0.6047 

(±0.2955) 
0.6593 

(±0.4341) 
0.6849 

(±0.2091) 
Log parsing with parameter entity labeling method 
Train set 0.9988 

(±0.0010) 
0.8121 

(±0.0956) 
0.9873 

(±0.0099) 
0.8926 

(±0.0598) 
Test set 0.9989 

(±0.0012) 
0.8704 

(±0.0868) 
0.9801 

(±0.0178) 
0.9279 

(±0.0499) 

TABLE VIII.  COMPARING WITH OTHER STATE-OF-THE-ART WORKS 
REGARDING TO THUNDERBIRD 

Work [ref.] Precision Recall Specificity F1-score 
Auto-LSTM [28] 99.8% 98.2% 99.8% 99.0% 
Auto-BLSTM [28] 99.8% 98.9% 99.9% 99.3% 
Auto-GRU [28] 99.9% 98.5% 99.9% 99.3% 
Logsy [26] 99.~% 100.~% - 99.~% 
LogBERT [29] 96.6% 96.5% - 96.6% 
NeuralLog [30] 93.~% 100.~% - 96.~% 
Proposed method 99.9% 99.3%  99.1% 99.6% 

TABLE IX.  COMPARING WITH OTHER STATE-OF-THE-ART WORKS 
REGARDING TO BGL 

Work [ref.] Precision Recall Specificity F1-score 
Auto-LSTM [28] 99.3% 99.8% 91.3% 99.5% 
Auto-BLSTM [28] 99.4% 99.9% 92.1% 99.6% 
Auto-GRU [28] 99.3% 99.9% 91.6% 99.6% 
Logsy [26] 29.~% 98.~% - 44.~% 
LogBERT [29] 89.4% 92.3% - 90.8% 
NeuralLog [30] 98.~% 98.~% - 98.~% 
Proposed method 99.9% 87.0% 98.0% 92.8% 

V. DISCUSSING AND CONCLUSION 
We applied parameter entity labeling to improve the log 

parsing method. However, this method still has limitation, 
such as the use of regular expressions. According to the 
comparison of predictive results between the conventional 
log parsing method and the log parsing with parameter 
entity labeling method, the proposed method improves all 
metrics for both the ThunderBird and BGL dataset. In 
addition, the results of down sampling indicate that 
proposed model can detect anomalies even when the data is 
imbalanced. Observable from specificity, which is not 
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dominated by the positive class, which is the majority of the 
data, reaching 0.99 for both the ThunderBird and BGL 
datasets. This reflects the model's ability to predict 
anomalies precisely and deal with imbalanced data. When 
comparing the evaluation metrics of each down sampling 
ratio, we found that precision and specificity are unchanged 
for the ThunderBird and BGL datasets. However, recall 
decreases when the ratio of normal class to abnormal class 
decreases, as is evident in the results for BGL.  
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