

Abstract— To build a reliable system, anomaly detection is
the principal task for ensuring the system's security. However,
the complexity of systems and software has increased over
time. As a result, the likelihood of system failures and
vulnerabilities has also grown. For this reason, employing
manual anomaly detection approaches is impractical. This
work proposes the use of a Convolutional Neural Network for
log-based anomaly detection and enhances a log parsing
method through parameter entity labeling. We have chosen
the ThunderBird and BlueGene/L datasets for our
experiments, employing a down-sampling technique to
address data imbalance issues and reduce model training time.
The results show that when comparing the detection outcomes
of models trained with the down-sampled training dataset and
models trained with the full training dataset (without using
down-sampling), the models trained with the full training
dataset exhibit higher recall, while their precision and
specificity remain comparable. Additionally, the results
indicate that our approach demonstrates slightly better
detection performance than the previous log parsing method.
Precision, recall, and specificity reach 0.9999, 0.9933, and
0.9914, respectively, when experimenting with the
ThunderBird dataset.

Keywords — Anomaly Detection, Log, CNN, Parameter
Entity Labeling

I. INTRODUCTION

Computer systems are essential for many critical
technologies today. However, as systems and software have
become more complex, the likelihood of system failures and
vulnerabilities has increased. These problems can lead to
system crashes or attacks by malicious actors. Anomaly
detection is a technique that can help identify these
vulnerabilities by looking for anomalies in system behavior.
By identifying potential problems early, anomaly detection
can help to reduce the likelihood of system failures and
vulnerabilities. Due to the volume and velocity of data
generated by complex systems, the manually anomaly
detection approaches become nearly impossible.

System logs are a sequence of timestamped strings that
are generated by computer systems. They are present in
almost all computer systems and report information about
events that occur during system operation. System logs store
information about events and the system's status at a specific
timestamp. This makes them a valuable source of
information for anomaly monitoring. System logs can be
used to identify unusual or unexpected activity, which can
be a sign of a potential security threat.

One of challenges in this field of study is insufficiency
of abnormal data. This leads to a data imbalance problem,
where there are many more normal logs than abnormal logs.

Some datasets do not even have labels [1, 2]. This creates
barriers to supervised learning. Unsupervised and semi-
supervised learning have thus received more attention in this
field of study. However, not all deep learning models
support unsupervised learning. As a result, many studies
have focused on semi-supervised learning that learns from
only labeled normal data and tests by normal and abnormal
data [3]. Additionally, there are some studies that use
sampling techniques for adjusting ratio of normal and
abnormal data to make the data balance [4, 5].

Another challenge of log-based anomaly detection is the
diversity of log messages. Log messages are constantly
changing, and new logs are generated to represent
unprecedented events. Additionally, the system's behavior
can change any time depending on the constantly changing
environment and situation. Furthermore, different threats
make this issue more difficult to deal with. The major key
that various studies employ to address this issue is to
transform words in log content to numeric representation.
The most common representation is semantic vector.
Semantic vector is a common technique in the field of
Natural Language Processing (NLP) for embedding the
information of a word or message to numeric form as a
vector. This vector represents the meaning and context of
that word or message. For example, Word2Vec [6].

In this work, we proposed a log-based anomaly detection
method using a Convolutional Neural Network (CNN)
model. CNN models have the advantage of having a low
number of hyperparameters and training time, as well as the
ability to reduce the dimension of the input, making the
model lightweight. We also proposed an approach to
develop a log feature extraction method before ingesting the
data to the model by improving the log parsing method,
Drain [7]. Instead of displacing the parameters in the log as
previous method, we handle parameters by replacing them
with their semantic entity such as replacing “10.251.42.84”
with “<IP>”. This method is able to keep more context and
semantic information of the logs than previous method. We
trained and evaluated the proposed model using the
ThunderBird and BlueGene/L dataset [8].

II. RELATED WORKS

A. Anomaly Detection
Anomaly detection is the task of finding rare or

unexpected events in data stream. These events are often
referred to as abnormal events. Anomaly detection can be
used to discover new knowledge in data, and it is essential
for a variety of tasks, especially those that require immediate
response [9]. In recent years, anomaly detection has become
increasingly important for building secure and reliable

Log-based Anomaly Detection using CNN model with Parameter
Entity Labeling for Improving Log Preprocessing Approach

Thanaphit Sutthipanyo, Thanadon Lamsan, Woradon Thawornsusin, and Wittawin Susutti*

Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
*Corresponding Author: wittawin.sus@kmutt.ac.th

TENCON 2023 - 2023 IEEE Region 10 Conference (TENCON)
31 Oct - 3 Nov 2023. Chiang Mai, Thailand

ThuA4J.1

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 913

systems. This is because systems are becoming increasingly
complex and the volume of data that they generate is
growing rapidly. Rule-based anomaly detection methods are
no longer sufficient for these complex systems. Machine
learning models are now being used for anomaly detection.
They can be divided into two main approaches: supervised
learning and unsupervised learning.

Supervised Learning – The model is trained on labeled
data. Liang et al. [10] investigated anomaly in high
performance computer system using time series data by
employing support vector machines (SVMs), and Peter et al.
[11] applied logistic regression to estimate the likelihood of
an event being anomalous.

Unsupervised Learning – The models do not require
labeled data to train. This makes them suitable for real-world
environments where labeled data may be unavailable. Xu et
al. [12] proposed using principal component analysis (PCA)
for anomaly detection in distributed computing systems. Lin
et al. [13] designed an online anomaly detection system that
uses clustering models.

B. Deep Learning for Log-based Anomaly Detection
In recent years, there has been a growing interest in using

deep learning techniques for anomaly detection in system
logs because of its success in text and image recognition.
One of the first deep learning models for anomaly detection
in log data was DeepLog [14], which was proposed by Du
et al. in 2017. DeepLog uses a recurrent neural network
(RNN) with long short-term memory (LSTM) units to learn
the sequence of log messages. DeepLog achieved F1-score
of 0.96 for HDFS dataset and 0.98 for OpenStack dataset.

Zhang et al. [15] proposed LogRobust, which is an RNN
model with Bi-directional Long Short-Term Memory (Bi-
LSTM) along with attention mechanism for dealing with
mutability of logs and events sequence. It reached precision
of 0.92 and recall of 0.97 for HDFS dataset. Meng et al. [16]
proposed LogAnomaly, which is an LSTM model for
detecting anomalies in the sequence of log keys. Moreover,
they also proposed template2vec embedding method for
transforming log keys to vectors. The evaluation result by
testing with BlueGene/L (BGL) dataset reached precision
and recall of 0.97 and 0.94 respectively. Studiawan et al.
[17] employed an artificial neural network applied Gate
Recurrent Unit (GRU) for sentiment analysis from logs of
operating system which achieved a high F1-score of 0.99 for
BGL dataset.

As mentioned above, RNNs have been shown to be
effective for anomaly detection in log data but trending off
accuracy against complexity that affect to expanding
number of parameters and training time. Even RNNs are
effective in text classification, structure of log is different to
regular text and the nature of log messages is not longer
enough to maximize RNNs performance [18]. While CNNs
are more lightweight models. Generally, CNNs are
employed for image classification. However, Yoon [19]
proposed an application of CNNs for text classification. In
addition, Rie et al. [20] suggested that CNNs are interesting
option for dealing with short text.

The studies which employed CNNs for log-based
anomaly detection also have outstanding performance as
RNNs. Siyang et. al [18] applied CNNs for NLP with
logkey2vec to detect abnormal log in big data systems. Their

model achieved precision and recall of 0.97 and 0.99,
respectively, for the HDFS dataset. Cheansunan et al. [21]
proposed a similar approach but they also compared the
training time of their model to RNNs. Their model was able
to achieve the same accuracy as RNNs, but it took 2-3 times
less time to train. Hashemi et al. [22] proposed OneLog,
which is a CNN model for end-to-end anomaly detection. It
compresses log parsing, embedding, and classification into
one model. OneLog achieved precision and recall of 0.99 for
the HDFS dataset. Gu et al. [23] proposed FLOGCNN,
which is a CNN model that supports federated learning. This
can be helpful for protecting the privacy of data.

C. Log Preprocessing
Logs are sequences of text that report the status of a

system and the events that occur in it at a particular
timestamp. As logs are unstructured data, they need to be
preprocessed before they can be ingested into a model. There
are two main approaches to log preprocessing.

Log Parsing - This approach identifies and displace the
variable and parameter parts of the log message, which are
mutable depending on situation and operation of system.
The remaining constant parts are then kept. The outputs are
the log key, which is a unique event templates, and a list of
the extracted parameters from that log. Zhu et al. [24]
implemented a tool that automates log parsing using various
algorithms such as Drain [7] and Spell [25]. Many recent
studies have use log parsing, including the popular works
DeepLog by Du et al. [14], LogRobust by Zhang et al. [15],
and LogAnomaly by Meng et al. [16].

Log Tokenization – This approach separates word or
token in the log message into a list of tokens. The tokens are
typically separated by whitespace. This method usually
includes turning all characters to lowercase, remove special
character and stop words. This method is more flexible than
log parsing, as it can handle logs that do not follow a fixed
template. However, it can also lose some of the meaning of
the original log message. Logsy proposed by Nedelkoski et
al. [26] used tokenization before embedding tokens to
vectors to avoid the limitations of existing log parsing
methods at that time.

Some studies have used a combination of log parsing and
tokenization. Catillo et al. [27] proposed a method to
estimate anomaly score of each token in log key before
ingesting to autoencoder for classifying by estimating the
reconstruction error, and FLOGCNN by Gu et al. [23] also
using combination method.

After the logs have been preprocessed, they are typically
converted into numeric representations using word
embedding technique. Word2vec [6] is a popular word
embedding model, which is a technique that uses a pre-
trained model to transform words or phrases into semantic
vectors.

III. METHODOLOGY

A. Log Data Preparation
The first step in the preprocessing pipeline is to split the

dataset into K sets of training sets and testing sets using the
K-Fold method. This helps to handle random factors and
ensure that the results are consistent. The experimental
results of all sets are then averaged.

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 914

The next step is to preprocess the log data. We use a
combination method that combines log parsing by Drain [7]
with tokenization. For conventional log parsing methods, the
variable and parameter parts are replaced with placeholders.
This means that the original information in these parts is lost.
However, in this work, we propose a method that keeps
certain information of those parts by replacing them with
their semantic entities. For example, the IP address
"172.16.96.116" would be replaced with "<IP>". The
parameter entities that applied in our method are <IP>,
<Number>, <Hexadecimal>, <RT>, <Path>, <Core>,
<similar_prev_pattern>, <Identifier>, and <Node>. These
entities represent different types of information that can be
found in log data. By preserving more semantic information
in the log data, our method is able to better understand the
meaning of the log data.

The log keys are then constructed as log sequences by
concatenating the l log lines preceding the observed line,
sorted by timestamp. If the dataset contains N log lines, then
the number of log sequences is 𝑁 − 𝑙 sets. To deal with the
imbalance of normal and abnormal data, we apply down
sampling technique to reduce the ratio of normal class to
abnormal class for balancing the data. We group the same
log sequence and measure each group’s size. If the observed
line (last line) of that group is labeled as an anomaly and the
size of that group is larger than a predefined threshold, then
we randomly pick 𝜌 ∙ 𝑛(𝐺!)	log sequences in that group,
where 𝜌 ∈ (0, 1) is the down sampling ratio and 𝐺! is 𝑖-th
log sequence.

After that, the log sequences are tokenized into token
sequences using regex tokenization. The down sampled
datasets are used only for training the model, but the full
training datasets are used for evaluation. Then, each token in
the token sequences is embedded to a d-dimensional
semantic vector using Word2Vec. If there are n total tokens
in the log sequence, then all 𝑛 vectors are vertically
concatenated to form a 𝑛 × 𝑑 dimensional matrix, which is
the input for the model.

Figure 1. Tree structure of Drain for clustering log key.

B. Log parsing and Parameter Entity Labeling
In this work, we applied Drain [7], an open source1

implemented by Logpai. Drain is a log parsing algorithm
employing regular expression (regex). We customized

1 https://github.com/logpai/logparser/tree/master/logparser/Drain

some parts of Drain’s source code for Parameter Entity
Labeling (PEL). Drain clusters log keys by applied tree
structure as shown in Figure 1. Where the keys of root’s
child nodes are number of tokens in log key and the keys of
deeper level nodes are token appear in 1st ,2nd, 3rd, …, dth
position of log key depending on that node’s depth. If the
token of log key is not matched with any node’s keys at its
position depth, the new node will be created using that
token as its key. At the leave nodes of the tree, they contain
set of log keys which are in the same cluster. After traversal
to the leave node, the input log key is compared with all log
keys in the leave node’s cluster by estimating similarity
using (1) formular to find most similar log key in that
cluster:
 𝑆(𝑇", 𝑇#) = 	

$(&!∩&")
$(&!)

 (1)

Where 𝑇$ =	 {𝑡𝑜𝑘𝑒𝑛! 	𝜖 log 𝑘𝑒𝑦$} ,which 𝑇" and 𝑇#
must have the same size.

C. Word Embedding
To transform log data into numerical representations,

which are appropriate for ingesting to the model, we
employed Word2Vec [6], a pre-trained model for
embedding words into semantic vectors. We fine-tuned the
Word2Vec model to enable it learn words in log massages
that do not exist in the model’s vocabulary. We did this by
using Continuous Bag of Words (CBoW), an algorithm for
training the model. The model learns by predicting the
observed word using the words around that word.

D. Anomaly Detection Model
In this work, we applied a CNN model for text

classification that was proposed by Yoon [19]. Figure 2
show the architecture of the CNN model.

Figure 2. Architecture of CNN model applied for text classification.

Determined a row vector �⃑�! ∈ ℝ) is a 𝑑-dimensional
semantic vector of 𝑖-th token in the token sequence of
𝑁	lines of log. Where that token sequence contains total 𝑛
tokens and defined matrix that is constructed by vertically
concatenating all vectors of that token sequence.

 𝑋":$ = �⃑�"⨁�⃑�#⨁𝑥+⨁…⨁𝑥$ (2)

Where ⊕ is vertically concatenating operation and
determined 𝑋!:!,- ∈ ℝ(-,")×) refers to matrix constructed
by concatenating �⃑�! , �⃑�!,", 𝑥!,#, … , 𝑥!,- vertically and 𝑚! ∈
ℝ is features extracted from convolution when applying
kernel 𝑊 ∈ ℝ/×) with 𝑋!:!,/0" and represent each row of
𝑊 as 𝑤JJ⃑ ! ∈ ℝ) , so that:

𝑚! = 𝑓L∑ 𝑤JJ⃑ 1," ∙ �⃑�!,1/0"
123 + 𝛽P (3)

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 915

Defined 𝛽 ∈ ℝ is bias and 𝑓 is activation function. 𝑚! is
determined by applied kernel on 𝑋":$ at each area in
{𝑋":/ , … , 𝑋$0/,":$} to build the feature map.

𝑚""⃑ = [𝑚!, 𝑚", … ,𝑚#$%&!] (4)

Where 𝑚JJ⃑ ∈ ℝ$0/," is feature map, then carry it to max-
over time pooling layer to extract highest value feature of
each feature map.

𝑚Q = 𝑚𝑎𝑥{𝑚JJ⃑ } (5)

Finally, these features are carried to Fully Connected
(FC) layer with SoftMax as an activation function and the
output is the probability of each class (in this case is
probability to be normal and abnormal).

𝑦4Q = 𝜎L∑ 𝑐!- ∙ 𝑚Q--2" +	𝛽56P! (6)

Where 𝑚Q- is output from max pooling feature map of
𝑗-th kernel and 𝛽56 is bias of FC layer and σ(x)! is SoftMax
function of class 𝑖.

To train the model, we employed Adam as a model
optimizer and cross-entropy as a loss function. We also
determined the weight of each class to deal with the class
imbalance problem.

E. Evaluation
To evaluate the performance of the predictive model, we

used precision, recall, and specificity. F1-score was
employed to show the overview of model predictive
accuracy. We used two datasets for the experiments,
Thunderbird and BlueGene/L (BGL) dataset, which contain
logs of high-performance computer [8].

F. Experimental Scope and Setting
In this work, we investigated the impact of down

sampling normal data and comparing between conventional
log parsing method and log parsing with parameter entity
labeling method on the predictive performance of the model.
We down sampled normal data with the condition that the
log sequence group is normative group, and its size is larger
than the 90th percentile of all groups size. We employed
Word2Vec pretrained by Google News 300, fine-tuned at 10
epochs, and trained the CNN model at 5 epochs with a
learning rate of 0.001. The overview of the proposed method
is shown in Figure 3.

Figure 3. Overview of the proposed method.

IV. EXPERIMENTAL RESULTS

The experimental results were divided into two sections.
The first section presents the results of anomaly detection
with down sampling normal data. The second section
presents the results of anomaly detection compared between
conventional log parsing and log parsing with parameter
entity labeling. The ThunderBird and BGL datasets were
split by 3-Fold method as shown in Table I and Table II.

TABLE I. NUMBER AND PERCENTAGE OF NORMAL AND ABNORMAL
LOG SEQUENCES OF EACH FOLD REGARDING TO THUNDERBIRD

ThunderBird Number of Data
Fold-1 Fold-2 Fold-3

Training dataset
Normal data 6,313,763 6,500,297 6,428,604
Abnormal data 336,321 149,787 221,480
Total 6,650,084 6,650,084 6,650,084
Testing dataset
Normal data 3,307,567 3,121,033 3,192,726
Abnormal data 17,473 204,007 132,314
Total 3,325,040 3,325,040 3,325,040

TABLE II. NUMBER AND PERCENTAGE OF NORMAL AND ABNORMAL
LOG SEQUENCES OF EACH FOLD REGARDING TO BGL

BlueGene/L Number of Data (Percentage)
Fold-1 Fold-2 Fold-3

Training dataset
Normal data 2,888,228 2,821,222 3,020,606
Abnormal data 254,097 321,103 121,718
Total 3,142,325 3,142,325 3,142,324
Testing dataset
Normal data 1,476,798 1,543,804 1,344,420
Abnormal data 94,362 27,356 226,741
Total 1,571,160 1,571,160 1,571,161

A. Result of Anomaly Detection with Down Sampling
Normal Data
We down sampled normal data with three ratios: 30%,

35%, and 40%. We evaluated the anomaly detection model
by the four metrics, averaged from 3-Fold dataset.

The results in table III and table IV showed that down
sampling normal data did not improve the predictive
performance of the model. It aggravated model’s accuracy
to predict normal data, as evidenced by the decreasing recall
when the normal data was decreased. Precision and
specificity were only slightly affected.

TABLE III. PREDICTIVE PERFORMANCE RESULTS OF ANOMALY
DETECTION WITH DOWN SAMPLING REGARDING TO THUNDERBIRD

ThunderBird’s training dataset
Ratio Precision Recall Specificity F1-score

30% 1.0000
(±0.0000)

0.9527
(±0.0267)

0.9998
(±0.0001)

0.9756
(±0.0140)

35% 0.9999
(±0.0001)

0.9321
(±0.0655)

0.9982
(±0.0017)

0.9636
(±0.0359)

40% 1.0000
(±0.0000)

0.9863
(±0.0017)

0.9992
(±0.0001)

0.9931
(±0.0009)

100% 0.9991
(±0.0012)

0.9986
(±0.0012)

0.9834
(±0.0220)

0.9989
(±0.0003)

ThunderBird’s testing dataset
30% 1.0000

(±0.0000)
0.9190

(±0.0572)
0.9986

(±0.0017)
0.9569

(±0.0308)
35% 1.0000

(±0.0000)
0.9107

(±0.0990)
0.9982

(±0.0022)
0.9503

(±0.0562)
40% 1.0000

(±0.0000)
0.9883

(±0.0084)
0.9985

(±0.0012)
0.9941

(±0.0043)
100% 0.9999

(±0.0000)
0.9933

(±0.0094)
0.9914

(±0.0112)
0.9966

(±0.0047)

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 916

TABLE IV. PREDICTIVE PERFORMANCE RESULTS OF ANOMALY
DETECTION WITH DOWN SAMPLING REGARDING TO BGL

BlueGene/L’s training dataset
Ratio Precision Recall Specificity F1-score

30% 0.9922
(±0.0107)

0.5699
(±0.3203)

0.9220
(±0.1079)

0.6587
(±0.3113)

35% 0.9998
(±0.0002)

0.4920
(±0.3726)

0.9993
(±0.0003)

0.5737
(±0.3485)

40% 0.9997
(±0.0003)

0.4782
(±0.3517)

0.9990
(±0.0009)

0.5663
(±0.3437)

100% 0.9988
(±0.0010)

0.8121
(±0.0956)

0.9873
(±0.0099)

0.8926
(±0.0598)

BlueGene/L’s testing dataset
30% 0.9994

(±0.0006)
0.5308

(±0.3214)
0.9913

(±0.0069)
0.6375

(±0.2683)
35% 0.9982

(±0.0023)
0.4457

(±0.3802)
0.9741

(±0.0358)
0.5228

(±0.3570)
40% 0.9993

(±0.0006)
0.2771

(±0.1781)
0.9961

(±0.0047)
0.4006

(±0.2384)
100% 0.9989

(±0.0012)
0.8704

(±0.0868)
0.9801

(±0.0178)
0.9279

(±0.0499)

B. Result of Anomaly Detection with Log Parsing and
Parameter Entity Labeling
The results of log parsing and parameter entity labeling

with ThunderBird dataset were defective. For some
parameters or some parts in the log content were not
parameter part, they were labeled as
“<similar_prev_pattern>”. This issue was caused by
underdetermining the max depth or max child node of the
tree and incomplete customization of Drain to support
parameter entity labeling. The sample of pestilent log keys
caused by this issue are showed in table V.

However, this issue was solved for BGL dataset2 by
executing parameter entity labeling process again with only
the parts that were labeled as “<similar_prev_pattern>”.

The table VI and VII show the anomaly detection
predictive performance of model trained by the ThunderBird
and BGL datasets, respectively, comparing between using
the conventional log parsing method by Drain and the
proposed log parsing method along with parameter entity
labeling by customized Drain.

C. Comparing Proposed Approach with Other State-Of-
the-Art Works

In this section, we compare the predictive performance of
our proposed approach with other state-of-the-art works
that apply deep learning for anomaly detection. We selected
works that used the ThunderBird and BGL datasets as we
did, which are Farzad et al. [28], Sasho et al. [26], Guo et
al. [29], and Van-Hoang et al. [30]. The results are shown
in Table VIII and Table IX.

TABLE V. SAMPLES OF PESTILENT LOG KEYS OF THUNDERBIRD
CAUSED BY DEFECTIVE LOG PARSING WITH PARAMETER ENTITY

LABELING METHOD

Original log
content Without PEL With PEL

data_thread() got
not answer from any
[Thunderbird_A6]
datasource

data_thread() got
not answer from
any <*>
datasource

data_thread() got not
answer from any
<similar_prev_pattern>
datasource

synchronized to
1 0 . 1 0 0 . 3 0 . 2 5 0 ,
stratum 3

synchronized to
<*> stratum <*>

synchronized to
<similar_prev_pattern>
stratum <Numbers>

2 The mentioned issue has not been solved for ThunderBird dataset because ThunderBird is

enormous, it requires the long processing time thus we could not complete it on our schedule.

TABLE VI. PREDICTIVE PERFORMANCE RESULTS OF COMPARING
BETWEEN CONVENTIONAL LOG PARSING AND LOG PARSING WITH

PARAMETER ENTITY LABELING REGARDING TO THUNDERBIRD

ThunderBird dataset
Conventional log parsing method

Dataset Precision Recall Specificity F1-score
Train set 0.9983

(±0.0022)
0.9882

(±0.0165)
0.9679

(±0.0411)
0.9931

(±0.0078)
Test set 0.9998

(±0.0001)
0.9831

(±0.0233)
0.9785

(±0.0262)
0.9912

(±0.0120)
Log parsing with parameter entity labeling method
Train set 0.9991

(±0.0012)
0.9986

(±0.0012)
0.9834

(±0.0220)
0.9989

(±0.0003)
Test set 0.9999

(±0.0000)
0.9933

(±0.0094)
0.9914

(±0.0112)
0.9966

(±0.0047)

TABLE VII. PREDICTIVE PERFORMANCE RESULTS OF COMPARING
BETWEEN CONVENTIONAL LOG PARSING AND LOG PARSING WITH

PARAMETER ENTITY LABELING REGARDING TO BGL

BlueGene/L dataset
Conventional log parsing method

Dataset Precision Recall Specificity F1-score
Train set 0.9818

(±0.0251)
0.5129

(±0.3320)
0.9284

(±0.0898)
0.6138

(±0.2810)
Test set 0.9505

(±0.0648)
0.6047

(±0.2955)
0.6593

(±0.4341)
0.6849

(±0.2091)
Log parsing with parameter entity labeling method
Train set 0.9988

(±0.0010)
0.8121

(±0.0956)
0.9873

(±0.0099)
0.8926

(±0.0598)
Test set 0.9989

(±0.0012)
0.8704

(±0.0868)
0.9801

(±0.0178)
0.9279

(±0.0499)

TABLE VIII. COMPARING WITH OTHER STATE-OF-THE-ART WORKS
REGARDING TO THUNDERBIRD

Work [ref.] Precision Recall Specificity F1-score
Auto-LSTM [28] 99.8% 98.2% 99.8% 99.0%
Auto-BLSTM [28] 99.8% 98.9% 99.9% 99.3%
Auto-GRU [28] 99.9% 98.5% 99.9% 99.3%
Logsy [26] 99.~% 100.~% - 99.~%
LogBERT [29] 96.6% 96.5% - 96.6%
NeuralLog [30] 93.~% 100.~% - 96.~%
Proposed method 99.9% 99.3% 99.1% 99.6%

TABLE IX. COMPARING WITH OTHER STATE-OF-THE-ART WORKS
REGARDING TO BGL

Work [ref.] Precision Recall Specificity F1-score
Auto-LSTM [28] 99.3% 99.8% 91.3% 99.5%
Auto-BLSTM [28] 99.4% 99.9% 92.1% 99.6%
Auto-GRU [28] 99.3% 99.9% 91.6% 99.6%
Logsy [26] 29.~% 98.~% - 44.~%
LogBERT [29] 89.4% 92.3% - 90.8%
NeuralLog [30] 98.~% 98.~% - 98.~%
Proposed method 99.9% 87.0% 98.0% 92.8%

V. DISCUSSING AND CONCLUSION
We applied parameter entity labeling to improve the log

parsing method. However, this method still has limitation,
such as the use of regular expressions. According to the
comparison of predictive results between the conventional
log parsing method and the log parsing with parameter
entity labeling method, the proposed method improves all
metrics for both the ThunderBird and BGL dataset. In
addition, the results of down sampling indicate that
proposed model can detect anomalies even when the data is
imbalanced. Observable from specificity, which is not

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 917

dominated by the positive class, which is the majority of the
data, reaching 0.99 for both the ThunderBird and BGL
datasets. This reflects the model's ability to predict
anomalies precisely and deal with imbalanced data. When
comparing the evaluation metrics of each down sampling
ratio, we found that precision and specificity are unchanged
for the ThunderBird and BGL datasets. However, recall
decreases when the ratio of normal class to abnormal class
decreases, as is evident in the results for BGL.

ACKNOWLEDGMENT
We are grateful to the Mathematics Department, Faculty

of Science, at King Mongkut's University of Technology
Thonburi for their generous financial support.

REFERENCES
[1] S. He, J. Zhu, P. He and M. R. Lyu, "Loghub: a large collection of

system log datasets towards automated log analytics,"
arXiv:2008.06448, 2020.

[2] A. Chuvakin, "Public security log sharing site," 8 November 2010.
[Online]. Available: https://log-sharing.dreamhosters.com/.
[Accessed 3 December 2022].

[3] M. Landauer, S. Onder, F. Skopik and M. Wurzenberger, "Deep
Learning for Anomaly Detection in Log Data: A Survey,"
arXiv:2207.03820, 2022.

[4] A. Farzad and T. A. Gulliver, "Log Message Anomaly Detection
with Oversampling," International Journal of Artificial Intelligence
& Applications (IJAIA), vol. 11, no. 4, pp. 53-65, 2020.

[5] P. Sun, E. Yuepeng, T. Li, Y. Wu, J. Ge, J. You and B. Wu, "Context-
Aware Learning for Anomaly Detection with Imbalanced Log Data,"
in 2020 IEEE 22nd International Conference on High Performance
Computing and Communications, Yanuca Island, Cuvu, Fiji, 2020.

[6] T. Mikolov, K. Chen, G. Corrado and J. Dean, "Efficient estimation
of word representations in vector space," arXiv:1301.3781, 2013.

[7] P. He, J. Zhu, Z. Zheng and M. R. Lyu, "Drain: An Online Log
Parsing Approach with Fixed Depth Tree," IEEE International
Conference on Web Services (ICWS), 2017.

[8] A. Oliner and J. Stearley, "What supercomputers say: A study of five
system logs," in 37th annual IEEE/IFIP international conference on
dependable systems and networks, 2007.

[9] Xhafa, P. Schneider and Fatos, "Chapter 3 - Anomaly detection:
Concepts and methods," in Anomaly Detection and Complex Event
Processing over IoT Data Streams With Application to eHealth and
Patient Data Monitoring, Academic Press, 2022, pp. 49-66.

[10] Y. Liang, Y. Zhang, H. Xiong and R. Sahoo, "Failure prediction in
ibm bluegene/l event logs," 7th International Conference on Data
Mining, 2007.

[11] P. Bodík, M. Goldszmidt, A. Fox and H. Andersen, "Fingerprinting
the Datacenter: Automated Classification of Performance Crises,"
EuroSys 2010, 2009.

[12] L. H. A. F. D. P. a. M. I. J. Wei Xu, "Detecting large-scale system
problems by mining console logs," SOSP’09, p. 117–132, 2009.

[13] Q. Lin, H. Zhang, J.-G. Lou, Y. Zhang and X. Chen, "Log clustering
based problem identification for online service systems," ICSE-C’16
IEEE, p. 102–111, 2016.

[14] M. Du, F. Li, G. Zheng and V. Srikumar, "DeepLog: Anomaly
Detection and Diagnosis from System Logs through Deep Learning,"
CCS’17, vol. 1, p. 1285–1298, 2017.

[15] X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie, X.
Yang, Q. Cheng, Z. Li, J. Chen, X. He, R. Yao, J.-G. Lou, M.
Chintalapati, F. Shen and D. Zhang, "Robust log-based anomaly
detection on unstable log data," the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, p. 807–817, 2019.

[16] W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen, R.
Zhang, S. Tao, P. Sun and R. Zhou, "Loganomaly: Unsupervised
detection of sequential and quantitative anomalies in unstructured
logs," IJCAI, vol. 19, no. 7, p. 4739–4745, 2019.

[17] H. Studiawan, F. Sohel and C. Payne, "Anomaly Detection in
Operating System Logs with Deep Learning-Based Sentiment

Analysis," Anomaly Detection in Operating System Logs with Deep
Learning-Based Sentiment Analysis, vol. 18, no. 5, pp. 2136-2148,
2021.

[18] S. Lu, X. Wei, Y. Li and L. Wang, " Detecting anomaly in big data
system logs using convolutional neural network," 2018 IEEE 16th
Intl Conf on Dependable, p. 151–158, 2018.

[19] Y. Kim, "Convolutional Neural Networks for Sentence
Classification," arXiv:1408.5882, 2014.

[20] R. Johnson and T. Zhang, "Effective Use of Word Order for Text
Categorization with Convolutional Neural Networks,"
arXiv:1412.1058, 2015.

[21] P. Cheansunan and P. Phunchongharn, "Detecting Anomalous
Events on Distributed Systems Using Convolutional Neural
Networks," 2019 IEEE 10th International Conference on Awareness
Science and Technology (iCAST), pp. 1-5, 2019.

[22] S. Hashemi and M. Mäntylä, "OneLog: Towards End-to-End
Training in Software Log Anomaly Detection," arXiv:2104.07324,
2021.

[23] S. Gu, Y. Chu, W. Zhang, P. Liu, Q. Yin and Q. Li, "Research on
system log anomaly detection combining two-way slice gru and ga-
attention mechanism," Artificial Intelligence and Big Data
(ICAIBD), p. 577– 583, 2021.

[24] J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng and M. R. Lyu., "Tools
and Benchmarks for Automated Log Parsing," International
Conference on Software Engineering (ICSE), 2019.

[25] M. Du and F. Li, "Spell: Streaming Parsing of System Event Logs,"
IEEE 16th International Conference on Data Mining (ICDM), 2016.

[26] S. Nedelkoski, J. Bogatinovski, A. Acker, J. Cardoso and O. Kao,
"Self-Attentive Classification-Based Anomaly Detection in
Unstructured Logs," 2020 IEEE International Conference on Data
Mining (ICDM), p. 1196–1201, 2020.

[27] M. Catillo, A. Pecchia and U. Villano, "Autolog: Anomaly detection
by deep autoencoding of system logs," Expert Systems with
Applications, vol. 191, pp. 116263-116284, 2022.

[28] A. Farzad and T. A. Gulliver, "Log Message Anomaly Detection and
Classification Using Auto-B/LSTM and Auto-GRU,"
arXiv:1911.08744, 2019.

[29] H. Guo, S. Yuan and X. Wu, "LogBERT: Log Anomaly Detection
via BERT," in 2021 International Joint Conference on Neural
Networks (IJCNN), Shenzhen, China, 2021.

[30] V.-H. Le and H. Zhang, "Log-based Anomaly Detection Without
Log Parsing," arXiv:2108.01955 [cs.SE], 2021.

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 918

