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Abstract—Although generic object-detection methods have
achieved a great deal, it needs more exploration for underwater
images. Underwater object detection (UOD) is associated with
challenges such as degraded image quality, low visibility, low
contrast, colour shift, and limited computational capacity avail-
ability on the deployment environment. Moreover, most previous
studies on deep learning-based underwater object detection
have generally concentrated on increasing detection accuracy by
utilizing huge networks. This work proposes a two-stage method
where in the first stage, underwater images are enhanced
based on PCA-fusion method. This step involves mutiple image
enhancement steps such as color correction process, followed by
the White Patch Retinex Algorithm for white balancing. On the
colour-corrected image, we apply global histogram equalization,
unsharp masking, and median smoothing separately to improve
the contrast, sharpen the image, and reduce the white patch
noise. Then, we create a single enhanced image by combining
the results of the three methods using the principal component
analysis (PCA) based fusion method. Finally, in the second stage,
the enhanced image is passed as an input to the attention-fused
lightweight single-stage object detection model for localization
and classification. Experimental results show that the proposed
method outperforms the state-of-the-art algorithms based on
various image enhancement and object detection evaluation
metrics on the URPC2019 dataset.

Index Terms—underwater object detection, lightweight net-
work, attention mechanism, YOLOv5s, image enhancement

I. INTRODUCTION

Underwater object detection (UOD) is a prominent re-
search area in the field of computer vision, which aims to
develop reliable algorithms and systems capable of localizing
and identifying objects in underwater environments. This
domain presents particular challenges due to the inherent
complexities of underwater imaging, including poor visibility,
color distortion, light absorption, and scattering phenomena.
The ability to accurately detect and classify underwater
objects has numerous applications in various fields, such
as marine biology, underwater exploration, environmental
monitoring, and underwater robotics. Due to this, generic
object detection methods [1]–[3] that have achieved remark-
able success in above-water scenarios have limited usage in
underwater environments. Therefore, specialized methods and
models are required to overcome these obstacles and achieve
accurate and robust object detection performance.

In recent years, significant progress has been made in
underwater object detection through the adoption of deep
learning techniques [4], [5], producing encouraging results.
These deep learning models can extract discriminative fea-
tures and capture detailed spatial information, improving
object detection performance in underwater scenes. However,
the majority of previous studies have mainly concentrated on
enhancing detection accuracy through the use of expansive
and intricate network designs [6]. There is still a need
for further exploration and research specifically tailored to
underwater image processing and object detection.
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With the development of computer vision and image
processing technology, research on the application of image
processing methods to improve the underwater image quality
to satisfy the requirements of the human visual system and
machine recognition has gradually started along with the
techniques of UOD such as the works in [7], [8]. As the
ocean environment is complex, many unfavorable factors,
such as the scattering and absorption of light by water and
the underwater suspended particles, have serious interference
with image quality. Due to this, using a fusion of various
image enhancement techniques is a promising approach.

This paper presents a novel approach for underwater ob-
ject detection that blends image-enhancing methods based
on fusion technology with a shallow object detection net-
work. Before feeding the underwater images into the object
detection model, our methodology involves several image
processing steps to improve the underwater images. The
image-enhancement methods we have outlined here have
been optimized for a particular kind of underwater image
dataset that involves underwater living organisms, consider-
ing factors such as the prevalent lighting conditions, water
turbidity, color aberrations, and the specific types of objects
to be detected. This optimization is an essential step as
different underwater environments can significantly vary in
their properties and therefore the effect of each preprocessing
step can vary accordingly. We begin by applying a color
correction process to address color aberrations in underwater
images. Subsequently, we employ the White Patch Retinex
Algorithm for white balancing. We further enhance the con-
trast, sharpness, and noise reduction on the color-corrected
image through the application of global histogram equaliza-
tion, unsharp masking, and median smoothing techniques,
respectively. To create a single enhanced image that preserves
the essential information from the individual enhancement
methods, we employ the principal component analysis (PCA)
based fusion method. Finally, the enhanced image is fed into
the attention-fused YOLOv5s model, a lightweight object
detection network. The attention mechanism in the network
enables the model to concentrate on the most informative
regions of the enhanced image, leading to accurate and
efficient detection of underwater objects.

The main contributions of the paper are threefold:

• We propose a comprehensive underwater image en-
hancement pipeline that addresses various challenges
related to underwater images. A PCA-based fusion
technique is used as a post-processing step to preserve
essential information while effectively creating a single
enhanced image.

• We propose a novel lightweight attention-fused UOD
framework using YOLOv5s. A global attention module
is inserted between the neck and head of the YOLOv5s
network to extract useful feature information effectively.

• We conduct extensive experiments on the URPC2019
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dataset to demonstrate the effectiveness of the proposed
methodology using object detection and image enhance-
ment evaluation metrics.

The remainder of this paper is organized as follows: Sec-
tion II provides an overview of related works in underwater
object detection and image enhancement techniques. Section
III describes the proposed methodology in detail. We describe
the experimental setup and analysis in Section IV. Finally,
in Section V, we draw a conclusion and potential future
directions.

II. RELATED WORK

A. Generic object detection

One of the most fundamental and challenging issues in
computer vision is object detection [9], which has recently at-
tracted much attention. Viola-Jones detector [10], histograms
of oriented gradients, and deformable part-based model [11]
are a few examples of traditional object recognition frame-
works based on handcrafted feature engineering.

With the rapid development in deep learning techniques,
state-of-the-art generic object detection is categorized into:
one-stage methods and two-stage methods. The one-stage
detectors mostly followed the works include You Only Look
Once (YOLO) [2] and Single Shot Detector (SSD) [1]. The
two-stage object detection algorithms such as R-CNN [12],
Fast-RCNN [13] and Faster-RCNN [14]. The convolutional
neural network (CNN) is the primary component of deep
model-based object detection frameworks that automatically
performs feature learning (or representation learning), inte-
grated with classification or regression tasks.

B. Underwater object detection

Vision-based underwater object detection has garnered
research attention considering its wide applications in marine
engineering, ocean environment monitoring, and underwater
robotics. One of the first studies on UOD focussed on
detecting and identifying fish species [4] using a quick R-
CNN-based technique. Multiscale features and complemen-
tary context data were used in [5] to create a single-shot
feature aggregation network for UOD. From the data augmen-
tation perspective, Lin et al. [15] proposed an augmentation
technique to conduct proposal-level fusion among multiple
images. An underwater detection framework with feature
augmentation and anchor refinement was proposed by Fan et
al. [6]. DG-YOLO [16] performed domain generalization to
address the UOD task’s domain shift. By interpolating paired
images on the feature level, Chen et al. [17] established the
training paradigm known as DMCL to sample new domains
on the domain manifold.

Some methods combine image enhancement with under-
water object detection as an end-to-end process methods.
To solve the weakly illuminated problem, Fenglei et al. [7]
combined the max-RGB method, shades of gray method, and
a CNN to obtain an illumination map. Yeh et al. [18] proposed
to jointly train the color conversion and object recognition
for underwater object detection address the underwater en-
vironment’s low contrast. Wang et al. [19] also proposed
an end-to-end CNN-based underwater image enhancement
framework for color correction and haze removal. Although
the aforementioned methods considerably increased detection

accuracy, majority of the approaches utilized deep learning
techniques which further increases the resource requirement
to train the model. In our approach, we use simple statisti-
cal image features extraction techniques which require low
computational resources.

III. PROPOSED METHODOLOGY

Based on the above analysis, we argue that utilizing only
the object detection method without enhancing the input
image cannot handle the challenging underwater environment
well. Therefore, we choose to take advantage of both image
enhancement methods and single-stage object detection meth-
ods to solve the underwater target detection task.

A. Fusion-based Image Enhancement

We illustrate the proposed framework for image enhance-
ment in Fig. 1. The first step involves color correction,
followed by parallel processing of contrast, sharpening, and
smoothing enhancement on the color-corrected image. Fi-
nally, the results are fused using a PCA-based fusion tech-
nique to obtain the final enhanced image.
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Fig. 1. Proposed image enhancement method

1) Color Correction: Color correction in underwater im-
ages involves altering the color balance to compensate for the
loss of colors due to light absorption in water. It is observed
that in underwater images, the red and yellow predominate
after the blue and green wavelengths are initially absorbed.
For color correction, we must first compensate the red (R)
channel’s loss of quality. If images have a greenish look,
we may also need to compensate for the blue (B) channel’s
loss of quality. Since the green channel is the least damaged,
adding a portion to the red and blue channels when necessary
serve as compensation. We use a color correction technique
[20] in this investigation that entailed modifying the B, R,
and BR channels. Then, we utilize a white balance algorithm
to help correct any color casts that may have been present in
the image and make sure the colors look genuine and natural.

Given an input image I, where Ir, Ig , and Ib represent the
red, green, and blue color channels, respectively, we want
to compensate for the loss of quality in the red and blue
channels. The formula for the compensated red channel Irc
and blue channel Ibc at every pixel location (x) are :

Irc(x) = Ir(x) + (Ig − Ir) · (1− Ir(x)) · Ig(x)

Ibc(x) = Ib(x) + (Ig − Ib) · (1− Ib(x)) · Ig(x)

The formulas compensate for the loss of quality in the
red and blue channels by incorporating the information from
the relatively less damaged green channel, thereby improving
color balance in the image.

The White Patch Retinex Algorithm is applied after color
balancing an image to rectify the color shifts caused by light
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absorption and scattering. It is based on the Retinex theory
[21], which states that the colors perceived by the human
visual system are determined by the ratio of an object’s
reflectance to that of its surroundings. In underwater images,
the colors of objects often undergo alterations due to light
absorption and scattering. To rectify these color distortions,
the White Patch Retinex algorithm estimates the reflectance
of a “White Patch” in the image and utilizes it to modify the
colors of other objects. The algorithm follows these steps:

1. Convert the input image from the RGB color space to
the logarithmic domain:

logR = log(R+ 1)

logG = log(G+ 1)

logB = log(B + 1)

2. Calculate the illumination map I using the following
formula:

I = max(logR, logG, logB)

3. Find the maximum value Imax of the illumination map
within a small region around the brightest pixel. This region is
determined using a localized search. Calculate the reflectance
map R using the following formula:

R = logR − log(Imax)

4. Convert the reflectance map back to the RGB color space:

R = exp(R)− 1

5. Apply a gamma correction to the output image to
improve its visual quality: Rout = Rγ , where γ is a user-
defined parameter controlling contrast.

6. Normalize the output image to ensure that pixel values
fall within the desired range:

Rout = Rout ×
255

max(Rout)

By estimating the reflectance of a reference “White Patch”and
adjusting the colors of other objects based on this reference,
the White Patch Retinex Algorithm can effectively rectify
color distortions in underwater images.

2) Global Histogram Equalization: It is comprised of the
following steps :

1. Convert the input RGB image to the HSV color space.
The HSV color space represents colors based on their hue,
saturation, and value/intensity.

2. Apply global histogram equalization to the value com-
ponent (V) of the HSV image, while keeping the hue (H) and
saturation (S) components unchanged.

3. The equalised HSV image is created by combining
the equalised value component with the original hue and
saturation components.

4. The contrast-enhanced image is produced by converting
the equalised HSV image back to RGB colour space.

3) Image Sharpening: We perform image sharpening us-
ing unsharp masking technique. The process for image sharp-
ening can be represented as follows:

1. We convert the RGB input image to grayscale and create
a blurred version of the grayscale image using a smoothing
filter that is, Guassian blur:

Igray(x, y) = 0.299 ·R(x, y)+0.587 ·G(x, y)+0.114 ·B(x, y)

Iblurred(x, y) = gBlur(Igray(x, y))

2. We then calculate the high-pass filtered image by subtract-
ing the blurred grayscale image from the original grayscale
image:

Ihighpass(x, y) = Igray(x, y)− Iblurred(x, y)

3. After this, we perform sharpening by adding the scaled
high-pass filtered image multiplied by a scaling factor called
“amount” to the original grayscale image:

Isharp(x, y) = Igray(x, y) + amount × Ihighpass(x, y)

4. Lastly, we convert the sharpened grayscale image back
to the original color space by replicating the sharpened
grayscale image across all three color channels (R, G, B).

4) Median Smoothing: It is a method for smoothing out
noise while maintaining an image’s edges. It functions by
substituting the median value of each pixel’s surrounding
pixels for that pixel’s value.

5) PCA-based Fusion: After applying the respective en-
hancement techniques, we have the following enhanced im-
ages: Global histogram equalized Image: Ighe, Sharpened
Image: Isharp, Smoothed Image: Ismoothed. We convert these
enhanced images into matrices by rearranging the pixel
values for each color channel: Equalized Matrix: Mghe(c, n)
where c represents the color channel and n denotes the
total number of pixels in the image. Sharpened Matrix:
Msharpen(c, n) Smoothed Matrix: Msmoothed(c, n). Next, we
concatenate these matrices into a single matrix:

Mconcat =

 Mghe
Msharpen
Msmoothed

 Next, we perform PCA on the

concatenated matrix to yield the principal components (PCs)
and their corresponding eigenvalues. Let P be the matrix of
principal components and Λ be a diagonal matrix containing
the eigenvalues. Then, we have, Mconcat = PΛ. Assuming the
original image has dimensions M × N and there are three
enhanced images (smoothened, sharpened, and histogram-
equalized), the concatenated matrix C will have dimensions
M×(3N). Each row of C represents a pixel, and each column
corresponds to a different enhanced image or processing step.

The next step involves selecting a subset of the principal
components that capture the most significant information. Let
l be the number of principal components to select. We then
can create a new matrix, Pl, containing only the l leading
columns of P , and a corresponding diagonal matrix, Λl,
containing the l leading eigenvalues. Mconcat ≈ PkΛk

Finally, the fused image is reconstructed by multiplying
the selected principal components with their corresponding
eigenvectors and summing the results as: Mfused = PlΛl. The
PCA-based image fusion technique assists in creating a fused
image that integrate the improved features from multiple
image enhancement methods.

B. Attention-fused Shallow Underwater Object Detection
Network

We modified the YOLOv5 detection framework for un-
derwater object detection by introducing a global attention
mechanism (GAM) to the overall network. Fig. 2 illustrates
the overall framework of the detection network. As our focus
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is to make our scheme feasible for embedded systems, we
choose the shallow version, that is, YOLOv5s which have
a small depth and width while ensuring high accuracy. To
amplify cross-dimensional interactions among the features at
different scales, we add GAM between the neck and the head.
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Fig. 2. Architecture of attention-fused YOLOv5s

The YOLOv5s network has three parts: backbone, neck,
and head. The backbone is a modified version of the CSP-
Darknet53 network. It consists of multiple convolutional
layers that extract hierarchical features from the input image.
These features capture low-level and high-level information
about the objects in the image at three different scales. The
Focus module, the Conv module, the C3 module, and the
spatial pyramid pooling module are all a part of it. The neck
is a component that connects the backbone network to the
detection heads. In YOLOv5s, a PANet (Path Aggregation
Network) and Feature Pyramid Network (FPN) are used to
fuse features from different scales to enhance the represen-
tation of objects of various sizes. The three detection heads
in the YOLOv5s architecture work at various spatial scales
of the feature map. Each detection head is responsible for
predicting bounding boxes, object classes, and confidence
scores for objects at its particular scale.

The attention mechanism, as outlined by Guo et al. [22],
prioritizes regions of the image where distinctive features
are present over those with less discriminative information.
By doing so, this global attention mechanism (GAM) aug-
ments the network’s capacity to learn and extract meaningful
patterns, thereby enhancing its overall performance. The
structure of GAM is shown in Fig. 3.
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Fig. 3. Structure of the global attention mechanism

Given an input feature map T ∈ RC×H×W , it is handled
in the channel as well as in the spatial dimension to obtain
channel attention map Ac ∈ RC×1×1 and spatial attention

map As ∈ R1×H×W . The final output is obtain by the
following steps:

T1 = Ac(T )⊗ T

T2 = As(T1)⊗ T1

where ⊗ refers to the element-wise multiplication, T1 and T2

are intermediate and final output.
We compress the spatial dimensions of the feature map

using average pooling and maximum pooling to generate
two features, send the two features to a fully connected
layer and a ReLU layer, and then combine the two features
using element summation to calculate the channel atten-
tion effectively. Finally, a sigmoid function standardizes the
channel attention map. The spatial link between the features
creates the spatial attention map. Two features are obtained by
compressing the channel dimensions of the feature map using
average pooling and maximum pooling to calculate the spatial
attention effectively. We use a 3 × 3 kernel for convolution
to link them. Finally, we standardize all elements using the
sigmoid function to create the spatial attention map.

The loss functions include localization loss Lloc, which
measures the discrepancy between the predicted bounding
box coordinates and the ground truth coordinates calculated
using mean squared error; confidence loss Lconf , which
penalizes the confidence scores of predicted bounding boxes
based on their overlap with ground truth boxes and is given by
binary cross-entropy; and class loss Lcls which measures the
discrepancy between the predicted class probabilities and the
ground truth class labels typically calculated using categorical
cross-entropy. The overall loss function used for training
YOLOv5s is a linear combination of the localization, con-
fidence, and class losses, with appropriate weights assigned
to each loss:

Ltotal = α · Lloc + β · Lconf + γ · Lcls

Here, α, β, and γ are hyperparameters that control the
relative importance of each loss term.

IV. EXPERIMENT AND ANALYSIS

We choose URPC2019 dataset for experimental analysis.
The dataset contains 4707 images, randomly divided into a
training set and validation set according to the ratio of 8:2.
The images are of size 640 × 640. It comprises four object
categories: Echinus, Holothurian, Scallop and Starfish.

We adopt the mean average precision (mAP), precision,
recall, and F1-score for object detection and entropy, aver-
age gradient, and UCIQE to asses the image enhancement
method. Our network is initialized using a pre-trained CSP-
Darknet53 model. We conducted experiments on NVIDIA
GeForce RTX 3090 graphics processor (40 G RAM). We op-
timize the model using the SGD (stochastic gradient descent)
method. The training epochs are fixed to 400, with a batch
size of 16, an initial learning rate of 0.01, a weight decay
of 0.0005, and the SGD momentum set to 0.9. In addition,
we also used the default data augmentation technique used in
YOLOv5. The hyperparameters settings of data enhancement
as : Scale =0.25, Mosaic = 0.75, Mix up = 0.50, Fliplr =
0.50 , Flipud =0.10, Translate = 0.10, hsv h = 0.01, hsv s
= 0.70, and hsv v = 0.40.
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Table I compares different schemes or methods based
on three quantitative measurements: entropy, average gra-
dient, and Universal Image Quality Index for Enhancement
(UCIQE). The proposed method yields the highest entropy
and average gradient based on these results. At the same time,
Kamul et al. [23] scheme achieves the highest UCIQE value,
suggesting superior image quality. Here, original refers to the
original images without any enhancement method.

TABLE I
QUANTITATIVE MEASUREMENT OF IMAGE ENHANCEMENT METHOD ON

URPC2019.

Scheme Entropy Average Gradient UCIQE
Our method 7.47 38.40 0.43
Original 6.11 12.31 0.43
Kamil et al. [23] 7.07 22.60 0.44

Fig. 4 illustrates some of the results from the proposed
enhancement method as a step-by-step visuals. We notice that
the PCA-based fusion, the retinex based algorithm and the
histogram equalization significantly removes the haze effect
and the color channel removal clearly performs the balancing
of the RGB channels. The sharpening step also removes the
blurriness of the image.

We show the overall results obtained via the proposed
UOD method on the original and the enhanced URPC2019
image datasets in Table II. The proposed method performs
reasonably well in terms of precision, especially when the
images are enhanced. However, the method without enhance-
ment has a relatively low recall, indicating that it misses a
significant number of positive instances. The enhancement
improves recall, resulting in a higher F1-measure, indicating
better overall performance in precision and recall.

TABLE II
OVERALL SCORES FOR PROPOSED UOD. OD REFERS TO THE RESULT
WITHOUT THE ENHANCEMENT PART AND ED REFERS TO THE IMAGE

WITH ENHANCEMENT.

Scheme Precision Recall F1-measure
Our method (OD) 0.86 0.52 0.65
Our method (ED) 0.89 0.72 0.80

Table III presents a comparison of the performance of
various state-of-the-art schemes on the URPC2019 dataset.
The evaluation metrics used include average precision (AP)
and class-wise precision for different marine species cate-
gories: Echinus, Holothurian, Scallop, and Starfish. The first
row of the table corresponds to proposed method which
incorporates the proposed image enhancement techniques and
attention-stage object detection method. It achieves an AP
of 0.76, demonstrating its superior performance compared
to the other schemes. In particular, it achieves the highest
precision for the Echinus and Starfish categories, with values
of 0.88 and 0.73, respectively. The second row corresponds
to the YOLOv5s scheme, which achieves an AP of 0.57. It
demonstrates relatively lower performance compared to our
method across all categories except for the Scallop category,
where it achieves a precision of 0.75. The subsequent rows
correspond to other state-of-the-art schemes such as [8], [16],
[24]–[26]. Notably, Paul et al. [25] achieves the highest
precision for the Scallop category (0.75), while Zhang et

al. [8] achieves the highest precision for the Holothurian
category (0.62).

TABLE III
COMPARISON WITH THE STATE-OF-THE-ART ON THE URPC2019

DATASET.

Scheme AP Ehinus Holothurian Scallop Starfish
Our method 0.76 0.88 0.60 0.69 0.73
YOLOv5s 0.57 0.66 0.50 0.75 0.28
Paul et al. [24] 0.65 0.66 0.50 0.75 0.71
Weo et al. [25] 0.59 0.66 0.50 0.50 0.71
Zhang et al. [8] 0.65 0.72 0.62 0.61 0.68
Liu et al. [16] 0.55 0.63 0.35 0.36 0.27
Dai et al. [26] 0.48 0.48 0.36 0.44 0.51

Fig. 5 shows some qualitative results on URPC2019 UOD
before (left) and after (right) the enhancement method. We
observe that after the enhancement process, more number
of objects are detected and overall as well as class-wise
performance is also improved.

V. CONCLUSION

In this work, we proposed an attention-fused lightweight
UOD network based on YOLOv5s. We also proposed an
image enhancement method as a pre-requisite for underwater
image to reduce the difficulty in detecting targets in under-
water environment based on PCA-fusion. Therefore, the in-
crease in the final detection accuracy plus its competitiveness
with the state-of-art methods on the URPC2019 although
the network is shallow is the result of the combination of
enhancement step and the global attention mechanism. The
future research prospects includes : end-to-end enhancement
and detection framework that works for UOD including
underwater text detection and recognition [27].
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