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Abstract—Software testing is a crucial component of soft-
ware development. With the increasing complexity of software
systems, traditional manual testing methods are becoming less
feasible. Artificial Intelligence (AI) has emerged as a promising
approach to software testing in recent years. This review paper
aims to provide an in-depth understanding of the current state
of software testing using AI. The review will examine the various
approaches, techniques, and tools used in this area and assess
their effectiveness. The selected articles for this study have been
extracted from different research databases using the advanced
search string strategy. Initially, 40 articles have been extracted
from different research libraries. After gradual filtering finally,
20 articles have been selected for the study. After studying all
the selected papers, we find that various testing tasks can be
automated successfully using AI (Machine Learning and Deep
Learning) such as Test Case Generation, Defect Prediction, Test
Case Prioritization Metamorphic Testing, Android Testing, Test
Case Validation, and White Box Testing. This study also finds
that the integration of AI in software testing is making software
testing activities easier along with better performance. This
literature review paper provides a thorough analysis of the
impact AI can have on the software testing process.

Index Terms—Software Testing, Artificial Intelligence, Test
Automation, Systematic Literature Review

I. INTRODUCTION

Software testing has a crucial role in software engineering
as it is essential for ensuring the quality, performance,
security, and reliability of software systems. By conducting
testing, developers can identify and rectify any bugs, or de-
fects in the software, improving its overall functionality and
making sure that the software satisfies customer needs and
expectations. AI is a vast area , so in this paper we mainly
investigate the subarea of AI which are Machine Learning
(ML) and Deep Learning (DL) techniques in software testing.
The field of software testing currently faces a number of
challenges. As software systems grow increasingly complex,
it becomes more challenging to manually test all possible
scenarios. Also, traditional test automation approaches are
time-consuming and complex to implement. Apart from that,
keeping pace with agile development is also a challenge
as it requires rapid testing. AI has the potential to address
these challenges by offering optimized and effective testing
strategies. The aim of this study is to gain a thorough under-
standing of the current state of the field of software testing
automation through the use of AI. This review will examine

the various methods, techniques, and tools utilized in this
domain and evaluate their efficiency. The motivation for this
systematic literature review stems from the potential benefits
that AI can offer in the field of software testing. AI has the
potential to automate the testing process and optimize testing
strategies, making software testing more efficient, effective,
and accessible. Moreover, AI can address the shortage of
skilled testers and help keep pace with the rapid development
cycles of agile development methodologies. There are several
challenges in software testing that can be solved using AI.
Some of these issues include manually generating test cases,
test optimization, test results analysis, etc.

The following research questions have been investigated
in this research study.

RQ1: Does manual testing have drawbacks?
RQ2: Can integration of AI (ML or DL techniques) in

software testing help to overcome the drawbacks of manual
testing?

RQ3: What software testing tasks can be automated by
AI (ML or DL)?

RQ4: What techniques do researchers use to assess AI
(ML or DL) when used in software testing?

In this research study, 40 articles have been screened from
different research libraries but through a gradual filtering
process, only 20 articles were found suitable for the study.
We have structured the paper in the following way. Related
works have been discussed in section 2 while the background
of software testing and AI have been presented in section
3. Systematic review and the results have been presented
in section 4 and 5 consecutively. In the end, conclusion is
presented in section 6.

II. RELATED WORKS

They [1] proposed a deep learning model to rank test
cases. In this work, they consider historical records of test
case executions and based on that deep learning model
rank test cases. They [2] conducted an empirical study on
continuous integration testing. They found the strategy of
reward function of Reinforcement learning improves the
existing test case prioritization practices. They [3] developed
a deep reinforcement learning technique for performing black
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box testing on android apps. Their developed technique out-
performs existing techniques in terms of fault identification.
They [4] proposed a deep learning-based approach for priori-
tizing test cases from the interaction of humans with software
applications. They showed that test case prioritization can
perform successfully from human interactions using their
proposed model. They [5] presented an approach to generate
input for the graphical user interface of software applications
by only capturing screenshots of applications.

They [6] proposed a machine learning-based approach to
predict metamorphic relations of scientific software using
graph kernels. They concluded that features extracted from
graphs help to achieve a good result. They [7] presented an
approach to automate test oracle mechanism using machine
learning. Their proposed approach captures historical usage
data and based on that generates an oracle. They [8] detected
metamorphic relations using graph kernels and support vector
machines (SVM). They [9] analyzed software defect pre-
diction using machine learning algorithms. They found that
linear classifier performs well compared to other algorithms.
They [10] proposed an improved CNN model to predict
software defects and their proposed model outperformed
existing models.

III. SOFTWARE TESTING & ARTIFICIAL INTELLIGENCE

Software Testing is a process to evaluate the software and
identify defects [11]. It is crucial for software to work or
perform as per requirements but it is natural having bugs
or defects in software. The bugs can be generated during
development, bug fixing, feature addition, code refactoring,
and even during software maintenance [12]. Therefore, it is
obvious for the development team to test the software under
different scenarios before releasing it to the client. There are
different strategies and techniques for software testing. Based
on the nature of the software it would be decided which
software testing technique should be used [13]. Software
testing techniques are very tedious and automation comes
here to ease the process. How AI can automate software
testing and why it is getting more acceptance than any other
technique will be discussed in this section. AI is a broad
area that encompasses various subareas, and ML is one of
the most prominent and widely applied subareas within AI.
In this paper, we discuss software testing using Machine
Learning (ML). We also focus on software testing using Deep
Learning (DL).

A. Software Testing Using Machine Learning

Machine Learning (ML) is a process where machines learn
from data using algorithms and can further predict or make
decisions based on the data [14]. The data-centric learning
approach has made Machine Learning powerful and widely
accepted in different areas including the software industry.
Figure 1 shows the general approach to apply Machine
Learning algorithms in software testing. There are different
activities in software testing like bug detection, generating
test data, test case generation, test optimization, API testing,
etc [?].

Bug Prediction using ML: Bug prediction can be per-
formed using machine learning. ML algorithms analyze
software code and predict the likelihood of future bugs in

the code. For performing bug prediction, ML models need
to be trained on historical data from past software projects
to identify patterns. Once the model is trained, then it can
predict the likelihood of bugs occurring in new code [15].
They [16] used supervised ML algorithms to predict software
faults based on historical data.

Test Case Generation using ML: In software develop-
ment, Test case generation from the requirement specifica-
tions document is one of the biggest challenges in software
testing. Software test cases can be generated using ML.
ML model needs to be trained on a set of data where a
set of software features are considered as input and the
corresponding test cases as output. Finally, the model uses
training data to generate new test cases [17].

Test Case Prioritization using ML: Test case prior-
itization can be performed using machine learning. ML
algorithms determine the most critical test cases to execute
based on the likelihood of failure and the potential effect on
the system. For prioritizing test cases, a machine learning
model needs to be trained on a set of labeled data, where
a set of software features are considered as input and the
corresponding priority level of each test case as output.
Finally, the model uses this training data to prioritize new
test cases based on their predicted priority level [1].

IV. SYSTEMATIC REVIEW

A review is a systematic study that helps to identify the
existing work, research question improvement scope, and
existing empirical studies [18]. In this study, 20 research
papers have been reviewed from the past 7 years which
have been collected from 6 different databases such as
ScienceDirect, IEEE, SCITEPRESS, ACM, Wiley Online
Library and MDPI.

A. Eligibility Criteria

Eligibility criteria for selecting articles for a systematic
literature review include relevance to the research questions,
publication time frame, language, publisher, and study design
[19]. For this systematic review, after filtering we have
selected 20 articles out of 40 articles from the last 7 years.
We only selected articles relevant to software testing using
machine learning.

B. Search String Strategy

After lots of searching in the research databases and
google scholar, we found many articles about software testing
using machine learning but only the most relevant articles
were selected. In this process, we have used the advanced
search string strategy [20]. In this search string strategy,
Boolean operators (AND, OR, NOT) have been used to
combine and exclude keywords in the search query.

Our search string was [(”Software Testing” AND ”Ma-
chine Learning”) AND (”Testing Automation Technique” OR
”Deep Learning” OR ”Black-box Testing” OR ”Integration
Testing” OR ”Metamorphic Testing” OR ”White Box Test-
ing”) NOT (”Manual Testing” OR ”Adhoc testing”)].

Apart from the search string strategy, one can use titles,
keywords, or abstracts to find out relevant publications. The
purpose of this study is to review the effective application of
AI (Machine Learning, Deep Learning) in software testing
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Fig. 1. A General Approach to Apply ML Techniques in Software Testing

TABLE I
INCLUSION AND EXCLUSION CRITERIA

Area Criteria
for Inclusion

Criteria
for Exclusion

Article
type

Research article,
SLR

Poster,
Book

Searched
keywords

Software testing,
Machine learning,
testing automation
technique,
Test data generation,
Blackbox testing,
Whitebox testing

Keywords
other than
ones in
“Inclusion criteria”

Interest of area

Software testing,
Software
Engineering,
Artificial
Intelligence

Area excluding
“Inclusion criteria”

Language English Languages
except English

Time
period 2015 -2022 Before 2015

by developing research questions, collecting and selecting
proper relatable studies through filtering methods. By ex-
amining the existing literature and answering the research
questions, we aim to provide the best current practices for
software testing.

C. Data Screening and Analysis

Each paper examines different aspects of applications of
ML, DL techniques in software testing. In most studies, the
authors compare different ML and DL models based on their
performance and identify the best results they could generate
from those models based on the subject criteria and expected
outcome. For the collection process, we have purposively
identified 40 research papers that are related to ML, DL, and
software testing by searching keywords in google scholar.
We also used a backward snowballing method where we
checked the references of the selected papers and identified
20 papers. After the collection of papers, we started the
screening process where by reading the title we would be
able to differentiate whether the topic being addressed is
relatable or not. Table I shows lists of inclusion and exclusion
criteria in detail during paper selection for this study.

The paper selection process involved sorting based on
eligibility criteria with a focus on the automation of software
testing using machine learning and deep learning techniques.
After filtering, 20 research papers were selected for the litera-
ture review study. The search strategy consisted of 5 stages:
identification of the research topic, screening, selection of
eligible papers, and final inclusion of research articles.

TABLE II
SELECTED RESEARCH STUDIES ACCORDING TO THE PUBLISHER

Publisher Name # Research Articles
IEEE 8
ACM 6
MDPI 2

Wiley Online Library 1
Science Direct 2
SCITEPRESS 1

D. Data Extraction

Data extraction means the process of retrieving relevant
data from various sources for a specific purpose, such as a
literature review [21]. In the context of software testing using
machine learning and deep learning, data extraction may
involve searching through academic journals, conference
proceedings, and other sources to gather information on the
latest developments and trends in software testing using ML
and DL. This information can then be used to summarise
a comprehensive review of the current state of the field,
identify gaps in existing knowledge, and provide insights into
future directions for research and practice. Table II shows the
details of the selected number of studies and their publishers.

V. RESULTS

This section provides insights into state-of-the-art tech-
niques and their effectiveness in improving the quality and
efficiency of software testing using machine learning and
deep learning. The review aims to provide a comprehensive
synopsis of the existing research in this domain by analyzing
a number of studies. We have selected 20 studies for the
study. The details findings of these selected studies have been
presented in table III. We also investigated the answer of the
research questions from the relevant research papers.

RQ1: Does manual testing have drawbacks?
Manual testing has several drawbacks. Some of the draw-

backs of manual testing are it is time-consuming, it does not
cover all possible scenarios and use cases, it is costly, it is
susceptible to human errors and it can not reproduce test
cases accurately [22]. Machine Learning and Deep Learning
can help to overcome the mentioned drawbacks of manual
testing. ML and DL can automate the testing process. By
leveraging the power of algorithms, more accurate testing
can be performed [23].

RQ2: Can integration of AI (ML or DL techniques)
in software testing help to overcome the drawbacks of
manual testing?

Integration of ML and DL techniques in software testing
can help to overcome the drawbacks of manual testing by
improving the efficiency, accuracy, and effectiveness of the
testing process. ML and DL algorithms can be trained to
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TABLE III
SUMMARY OF THE SELECTED STUDIES

SL Paper Id Year Publisher
Name Findings

1 P1 [27] 2022 ACM
Authors proposed an approach utilizing Deep Reinforcement
Learning (RL) for automating the exploration of Android apps. Authors
developed a tool called ARES along with FATE that integrates with ARES.

2 P2 [28] 2022 MDPI
This paper analyzed ML frameworks in the context of software automation and
evaluated the performance of testing tools considering various factors. Accuracy
or error rate, scope are important factors to determine the effectiveness of frameworks.

3 P3 [29] 2022 Science
Direct

This study investigates the efficacy of machine learning, data mining,
and deep learning methodologies in predicting software faults. This investigation reveals that
data mining and machine learning techniques are utilized more than deep learning techniques.

4 P4 [30] 2022 ACM This paper introduces Keeper, a novel testing tool. Keeper adopts a unique approach where it
creates pseudo-inverse functions for ML APIs. Keeper significantly enhances branch coverage .

5 P5 [31] 2021 IEEE
This study presents DeepOrder, a regression machine learning model based on deep
learning techniques. DeepOrder can prioritize test cases and identify failed test cases when
it considers various factors such as test case duration and execution status.

6 P6 [32] 2021 Science
Direct

This study investigated reward function and reward strategy within the context of
continuous integration (CI) testing. The authors proposed three strategies in terms
of the reward strategy. Proposed strategies showed promising results.

7 P7 [5] 2021 IEEE This paper introduces Deep GUI. Deep GUI utilizes deep learning techniques to create
a model of valid GUI interactions, based solely on screenshots of applications.

8 P8 [33] 2021 IEEE This study finds that most ML libraries lack a high-quality unit test suite. Moreover, the study
also discovers recurring trends in the unexamined code throughout the five assessed ML libraries.

9 P9 [34] 2021 IEEE This study presents a deep learning approach to predict the validity of test inputs
for RESTful APIs. The proposed network achieved 97% accuracy for the new APIs.

10 P10 [35] 2019 IEEE

This paper introduces Humanoid, a deep learning approach for generating
GUI test inputs by leveraging knowledge gained from human interactions. It learns
from traces of interactions generated by humans, enabling the automatic prioritization
of test inputs based on their perceived importance to users.

11 P11 [36] 2019 ACM This study finds equivalent mutants are effective for augmenting data
and improving the detection rate of metamorphic relations.

12 P12 [37] 2019 MDPI

This study introduces an enhanced CNN model specifically designed to improve
the learning of semantic representations from source-code. This study also showed
enhancements of the global pattern capture capability of the models which improve
the model’s generalization performance.

13 P13 [38] 2019 IEEE

This study used three supervised machine learning algorithms for predicting software
bugs. To enhance the accuracy of models, random forest
ensemble classifiers have been used. The developed models effectively work for various
scenarios.

14 P14 [39] 2019 IEEE
This study finds ML algorithms have predominantly been employed in different areas
of software testing. Test case generation, evaluation, test oracle construction,
and cost predicton for testing activitires can be performed using ML.

15 P15 [40] 2018 ACM
This study presents an approach for automating the test oracle mechanism in software
using machine learning (ML). By incorporating a captured component into the application,
historical usage data have been gathered. These data later generate an appropriate oracle.

16 P16 [41] 2018 SCITE
PRESS

This paper describes a tool that generates test data for programs.
The tool operates by clustering input data from a corpus folder and creating
generative models for each cluster. These models are recurrent neural networks.

17 P17 [42] 2018 ACM
This paper introduces a methodology called DaOBML, which offers tool support to
enhance the quality of environmental models that generate complex artifacts like images
or plots. In this study, among six ML algorithms, ANN shows the best performance.

18 P18 [43] 2017 ACM
This study introduces DeepXplore, an innovative whitebox system designed to
systematically test DL systems and detect faulty behaviors. DeepXplore can
solve joint optimization problems.

19 P19 [44] 2016
Wiley
Online
Library

This study, proposed a ML approach that can predict metamorphic relations in
software programs. To achieve this, authors utilized a graph-based representation
of the program.

20 P20 [45] 2016 IEEE
This study proposed an approach for prioritizing test cases in manual testing. The proposed
approach considers black-box metadata, including test case history. SVM Rank ML algorithm
is used in this study.
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TABLE IV
TESTING ACTIVITIES AUTOMATED BY ML & DL

Software Testing Activity Total
Test Case Generation 4

Defect Prediction 3
Test Case Prioritization 3
Metamorphic Testing 2

Android Testing 2
Test Case Validation 1
White Box Testing 1

automate repetitive testing tasks, which reduces the required
effort for manual testing. This improves the efficiency of
the testing process and enables faster testing. ML and DL
algorithms can also analyze large amounts of data which help
to identify defects in the software system. Identification of
the defects improve the accuracy of the testing. Apart from
that , ML algorithms can generate test cases using historical
data or existing code, optimize the testing by prioritizing test
cases [24].

RQ3: What software testing tasks can be automated
by AI (ML or DL) ?

Machine Learning and Deep Learning techniques can
automate different types of software testing tasks such as test
results analysis, test case prioritization, defect prediction, test
execution, test case evaluation, test case refinement, testing
cost estimation, test oracle construction, identification of
metamorphic relations, and test case generation [24]. Table
IV shows testing activities that can be automated by machine
learning

RQ4: What techniques do researchers use to assess
AI (ML or DL) when used in software testing?

Researchers consider different performance matrices to
assess ML algorithms when used in software testing. The
performance matrices are cross-validation, accuracy, preci-
sion, recall, receiver operating characteristic (ROC) curve,
area under the curve (AUC), and f1 score [25]. The column
total represents the number of papers where these testing
activities have been automated by machine learning.

Precision: Precision is a statistical measure that quantifies
the ratio of true positive instances out of the total positive
predictions made. [26].

Recall: Recall is a statistical indicator utilized to quantify
the fraction of true positive outcomes within the entirety of
actual positive instances [26].

ML and DL algorithms have shown promising results
to automate software testing tasks. Some of the promising
algorithms are Neural networks, Decision Tree, Support
vector machines, and Random Forest, .

VI. CONCLUSIONS

Software testing plays a key role in the development
of software. However, as software systems become more
complex, traditional manual testing methods are becoming
less practical. There has been growing interest in leveraging
AI for software testing. The aim of this study is to compre-
hensively explore the current state of AI in software testing.
This review examines various approaches, techniques, and
tools employed in this field, assessing their effectiveness. The
articles selected for this study were obtained from different

research databases using an advanced search strategy. Ini-
tially, 40 articles were retrieved, and after a rigorous filtering
process, 20 articles were chosen for analysis.

Based on the findings of the selected papers, it is evi-
dent that AI (Machine Learning and Deep Learning) can
successfully automate several testing tasks. These tasks in-
clude Test Case Generation, Defect Prediction, Test Case
Prioritization, Metamorphic Testing, Android Testing, Test
Case Validation, and White Box Testing. The integration of
AI in software testing is shown to simplify testing activities
and enhance performance. In the future, incorporating AI
(machine learning and deep learning) techniques in different
testing activities will make it easier to perform testing
activities. A limited number of studies have been examined
in this study, which is a limitation. Conducting a review of
a larger number of studies would provide the opportunity to
gain more deeper insights.
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