

Construction of RDF Knowledge Graph with

MongoDB

Li Yan

College of Computer Science

and Technilogy

Nanjing University of Aeronautics

and Astronautics

Nanjing, China

yanli@nuaa.edu.cn

 Hui Hu

College of Computer Science

and Technilogy

Nanjing University of Aeronautics

and Astronautics

Nanjing, China

Zongmin Ma

College of Computer Science

and Technilogy

Nanjing University of Aeronautics

and Astronautics

Nanjing, China

zongminma@nuaa.edu.cn

Abstract—Resource Description Framework (RDF) is

widely used in semantic extraction, unified organization, and

intelligent processing of large amounts of data because of its

machine intelligibility. For example, knowledge graph based on

RDF is commonly used in intelligent search, recommendation

system, and smart medical treatment. And RDF is used to

express the relationship between entities and process the

semantics of data. Many efforts have been made to convert

various data (such as relational database, XML, and JSON)

into RDF. Yet, the effective generation of usable RDF data is

still an urgent problem to be solved. With the wide use of

NoSQL database, massive data is stored in NoSQL database,

but the research on generating RDF from NoSQL database is

not emphasized. We put forward a formal definition of

MongoDB, and according to this definition, we propose a

method of automatically extracting data from MongoDB and

building corresponding RDF. Based on this method, we have

also implemented a prototype system named M2R to validate

method performance. The experimental results show that our

approach is feasible and efficient.

Keywords—RDF, automatic construction, OWL, MongoDB

I. INTRODUCTION

The Semantic Web is an intelligent network, which
enables machines to understand the concept of data and the
logical relationship between different data by adding
metadata. The purpose of the Semantic Web is to provide a
general semantic framework so that data can be shared and
reused without being limited by applications, businesses, and
communities [3]. The core of the Semantic Web technology
stack is Resource Description Framework (RDF). RDF is a
model framework proposed by the World Wide Web
Consortium (W3C), which is used to describe the content of
the Semantic Web in a standardized way. RDF is widely
used in semantic extraction, unified organization, and
intelligent processing of large amounts of data because of its
machine comprehensibility (such as adding semantics to
resource description on the network) and the characteristics
that RDF format data can be shared, exchanged, and
integrated without losing semantics [18]. RDF is widely
accepted and used, which leads to the enthusiasm of building
RDF and the surge of RDF data [13]. However, it is still an
urgent problem to generate effective and available RDF data.

Building RDF from existing massive data is in a good
direction. As far as we know, much work has been made to
build RDF from different types of data sources, such as
relational databases, XML, JSON. The existing research
work mainly focuses on generating RDF data onto relational
databases (e.g., direct mapping and R2RML) and XML (e.g.,
[4]). With the widespread use of JSON, a lightweight data

exchange format on the Web, a group of people began to
study how to convert JSON to RDF (e.g., [14]). With the
continuous development and application of network
technology, the amount of available data is increasing, and
the traditional databases cannot effectively deal with big data
[7]. NoSQL (not only SQL) databases are developed by big
data management, which are a supplement to the traditional
databases. Although NoSQL databases are widely utilized in
various areas of the Internet, research on building RDF from
NoSQL databases is still insufficient. It is a good idea that
extract knowledge to generate RDF from a NoSQL database
containing massive data to provide a standard and unified
information processing framework.

To better describe our method of constructing RDF with
MongoDB, we put forward formal definitions of MongoDB
database and RDF based on their data model. This approach
can deal with the semantic information contained in the
MongoDB database. Based on this method, we implemented
a mapping tool named M2R, which can automatically build
RDF based on the MongoDB database and is convenient for
non-professional users.

The rest of this paper is organized as follows. Section 2
presents the related work. Section 3 provides some
preliminaries of the formal definitions of RDF and
MongoDB. Section 4 details mapping rules of converting
MongoDB to RDF. In Section 5, based on the mapping rules,
we present the algorithm to construct RDF from MongoDB.
Section 6 summarizes the thesis and points out the prospects
of future work.

II. RELATED WORK

The first type of RDF construction method mainly
generates RDF based on relational databases. Up to the
present moment, there has been a lot of research work about
building RDF based on relational databases because of the
widespread applications of RDB in many areas. Here, we list
several representative research jobs. In [16], formal
definitions of relational databases are given. And then, based
on the mapping relationship between the relational database
and the RDF data model and formal definitions of RDB, the
mapping rules for the relational database to the RDF data
model are defined to generate RDF data. This method studies
monotonicity, information preservation, query preservation,
and semantic preservation and proves that this method must
be information preservation and query preservation.
Information preservation means the conversion process of
RDB to RDF would not lose information and exist some way
to reconstruct the RDF to the original RDB. Query
preservation means that a query about a relational database
can be converted into an equivalent RDF query above RDF

TENCON 2023 - 2023 IEEE Region 10 Conference (TENCON)
31 Oct - 3 Nov 2023. Chiang Mai, Thailand

WedA3V.3

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 370

dataset converted by the RDB with the same semantics.
According to the mapping rules of relational tables to RDF
and schema information storing in system database
information_schema, RDF files are generated with MySQL
in [5]. The World Wide Web Consortium (W3C) proposed
two standards, direct mapping, and R2RML, to extract
semantic information from relational databases and generate
RDF. Most methods of building RDF based on RDB follow
either direct mapping or R2RML standards.

The second type of RDF construction method generates
RDF with XML. Founded on XQuery and SPARQL,
XSPARQL is proposed in [4], which supports querying
XML and RDF data using the same framework and
converting these two kinds of data to each other. Using the
declarative and semantic of RDF SPARQL and the
expressive power of XML XQuery, a method proposed in
[10] transforms XML data to RDF based on keyword or
graph query. In [8], the authors propose an RDF template
language based on simple XPath expressions and a
conversion method from XML onto RDF based on the
template language. By analysing the tree structure of XML,
paper [12] divides XML elements into three sub-models and
then proposes related mapping rules to map the XML to RDF.
Paper [6] proposes a set of mappings to convert XML
Schema into Shape Expressions (ShEx), which is an RDF
validation language, and develops a prototype system to
obtain ShEx from XML Schema.

JSON is a more lightweight data exchange format than
XML in the web application, easy to parse and efficient to
transfer. With the widespread use of JSON on the Web, some
work about converting JSON to RDF has been carried out. In
[14], the authors define a formal mapping language based on
the JSON-Pointer syntax to transform JSON documents into
RDF. With this mapping language, they implement a
mapping tool from JSON to RDF called J2RM. For helping
developers use the JSON output of SPARQL queries, the
authors in [11] transform the SPARQL JSON output to
JSON-LD, a lightweight syntax to serialize Linked Data in
JSON and launched by the W3C JSON-LD Working Group.

Although a great deal of work has been done to transform
data onto various formats into RDF, little research
concentrates on NoSQL. Compared with traditional
relational databases, NoSQL databases generally have no
fixed schema, which causes difficulty in constructing RDF
with NoSQL. Based on the correspondence with Key-Value,
[1] and [17] define the mapping rules to transform
MongoDB documents to RDF/OWL. However, neither of
these methods can handle documents with complex
structures, such as multi-layer nested documents and arrays.
[9] use the Formal Concept Analysis (FCA) method to
construct a concept lattice from MongoDB, defines the
transformation rules from concept lattice to ontology, and
builds the ontology based on MongoDB data. Unfortunately,
this method requires users to have professional background
knowledge of formal concept analysis to build concept
lattices from MongoDB. As far as we know, there is no tool
to support the construction of concept lattice with MongoDB.

In this paper, based on MongoDB and RDF, we propose
formal definitions of MongoDB and RDF. Relying on the
definitions, we propose a construction method of
transforming MongoDB data to RDF, guaranteeing semantic
preservation in the transformation process. Unlike [1], [17]
and [9], our method supports to process data with complex

structure. At the same time, we provide an automated
conversion tool for non-professional users. Finally, we prove
the effectiveness of our method.

III. PRELIMINARIES

(1) RDF data model

RDF data model consists of a group of RDF statements,
which are represented by the triple of subject, predicate, and
object. The subject is the described resource, the predicate
represents the relationship between the subject and the object,
and the object is the attribute value of the predicate, which
can be a resource or a literal. A resource is anything with a
Universal Resource Identifier (URI), and the object is a
literal or resource, depending on whether the corresponding
predicate represents a relationship between resources or an
attribute of a resource. RDF is a domain-independent
universal description language, which does not define any
domain semantics. To overcome the defect that RDF does
not define domain semantics, people use the RDF Schema to
define domain semantics. The RDF Schema defines a set of
modeling primitives with fixed semantics, including
rdfs:Class, rdfs:Literal, rdfs:subClassOf, rdfs:subPropertyOf,
rdfs:domain, rdfs:range, and others. Based on RDF and RDF
Schema, OWL adds modeling language to enhance
expression ability [2].

Definition 1 (RDF data model with OWL vocabulary) An
RDF data model is defined as a tuple:
RWM=(RB,PA,RI,RL,TP) where:

(a) RB=RC∪RD∪RP, RB is a finite set of basic

properties of RDF, RDF Schema, and OWL. RC is a finite
set of class resources, RD is a finite set of data types, and RP
is a finite set of attribute resources.

(b) RP=RDP∪ROP, RDP is a finite set of datatype

properties, and ROP is a finite set of object properties.

(c) PAxiom=Dxiom∪Rxiom, PAxiom represents a finite

set of all property axioms.

(d) Dxiomp={c|c is the domain of property p, p∈ RP and

c∈RC}, Dxiomp means that the domain of property p is

class c.

(e) Rxiomp=Rxiomdp∪Rxiomop, Rxiom_dp={x|x is the

range of DatatypeProperty dp, dp ∈ RDP, x ∈ RD},

Rxiomop={y|y is the range of ObjectProperty op, op∈ROP, y

∈RC}, Rxiomp⊆ Rxiom, Rxiomdp means that the range of

DatatypeProperty p is x. Rxiomop means that the range of
ObjectProperty p is y.

(f) RI is a finite set of all RDF individual (URI or IRI).
(i) RL is a finite set of literal.
(j) TP is a finite set of triple (S, P, O).

(2) MongoDB data model

As a document-oriented database which is a type of
NoSQL, MongoDB is an open-source database and provides
many features such as high performance, high availability,
and automatic extension. This database consists of the
collection composed of documents, which are equivalent to
tables in relational databases. Each document formed of a set
of key-value pairs is similar to the record of the table. Regard
BSON as document storage and data interchange format,
MongoDB supports dynamic schema design and allows
documents in a collection to have different fields and
structures. Next, we present a formal representation of
MongoDB data model.

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 371

Definition 2 (MongoDB Model) A MongoDB model is
defined as a tuple: M=(C,K,T,DF,RF,D,V) where:

(a) C is a finite set of all collections. K represents a finite
set of all fields. T represents all data types supported by
MongoDB, T(k) indicates the type of field k.

(b) K = KB ∪ KE ∪ KD ∪ KM ∪ KA . KB is a finite set
of basic type field, KE is a finite set of embedding document
field, KD is a finite set of DBRef referencing field, KM is a
finite set of manual referencing field, and KA is a finite set of
array type field. KM is user define fields, which need user to
complete referencing collection and referencing field.
KM(k) = (referencing collection, referencing field)
denotes referencing collections of manual referencing field k.

(c) DF is a finite set of field domain in the database, df(k)
indicates the domain of field k.

(d) D is a finite set of all document in the databases, c ∈
 C, D(c) ⊂ D denote all documents in collection c. α(c) ⊂ K
denote all fields in collection c . d ∈ D(c), α(d) denote all
fields in document d in collection c.

(e) V is a finite set of fields value, k ∈ K, V(k) denotes
value of field k, T(v) is same as T(k).

IV. MAPPING RULES FROM MONGODB TO RDF MODEL

According to the formal definitions of the RDF data
model and the MongoDB model given in the previous
section, in this section, we provide the rules for mapping
MongoDB to RDF with some OWL vocabulary from two
aspects: schema mapping and instance mapping. Assume that
φ denotes mapping process.

Rule 1: ∀ df ∈ DF → φ(df) ∈ RC.
All field domains in MongoDB are transformed into RDF

Class. Field domain in DF is usually Collection name or
embedding document field, but sometimes maybe array field
the value of which includes many documents usually used to
represent the one-to-many or many-to-many relationship. For
example, in Table 1, sample data has two collections and two
embedding document fields, particularly, listings, reviews,
address, and location that are converted into RDF Class.

Rule 2: ∀ k ∈ KB → φ(k) ∈ RDP AND Dxiomφ(k) =

φ(DF(k)) AND Rxiomφ(k) = φ(T(k)).

All basic type fields are converted into RDF
DatatypeProperty that domain is RDF Class mapped by field
domain, and the range is limited to the field type. For
instance, in the sample data, field “name” and “type” are
basic type fields converted into RDF DatatypeProperty. The
type of the two fields is string type. But the field “name”
domain is collection name “listing”, field “type” domain is
“location”. Therefore, the first DatatypeProperty domain is
RDF Class corresponding to collection name “listing”, and
the other is RDF Class corresponding field “location”.

Most datatypes in MongoDB can be transformed into
RDF datatypes with XML Schema Definition (XSD). But the
others (such as ObjectId) cannot be mapped in XSD.
Therefore, we defined customized identifiers to represent
these datatypes into RDF. Table I gives the mapping rules
from MongoDB datatypes to RDF datatypes.

TABLE I. MAPPING MONGODB DATATYPES TO RDF DATATYPES

MongoDB RDF

String xsd:string

Binary data xsd:hexBinary

ObjectId mongodb:ObjectId

Boolean xsd:boolean

Date xsd:date

Null mongodb:null

Regular Expression mongodb:re

JavaScript mongodb:js

32-bit integer xsd:int

Timestamp xsd:datetime

64-bit integer xsd:long

Decimal128 xsd:decimal

Min key mongodb:minkey

Max key mongodb:maxkey

Object Class

Array Seq

Rule 3: ∀ k ∈ KE → φ(k) ∈ ROP AND Dxiomφ(k) =

φ(DF(k)) AND Rxiomφ(k) = φ(k).

All embedding fields are extracted into RDF object
properties domain of which is the RDF Class corresponding
to field domain and range is class corresponding to the
embedding field. For example, embedding fields “address”
and “location” are transformed into RDF object properties.

Rule 4: ∀ k ∈ KD → φ(k) ∈ ROP AND Dxiomφ(k) =

φ(DF(k)) AND Rxiomφ(k) = φ(V(k). $ref, V(k). $db).

A DBRef field is extracted into RDF object property
domain of which is the class corresponding to the field
domain, and range is class corresponding to the field value
($ref and $db in the DBRef). For example, DBRef field
“review” is converted into RDF object property that domain
is class corresponding to the field domain (collection
“listing”) and range is also class corresponding to field value
(referenced collection “reviews”).

Rule 5: ∀ k∈ K_M→φ(k)∈ ROP AND Dxiom_φ(k)

=φ(DF(k)) AND Rxiom_φ(k) =φ(K_M (k)).
All manual referencing fields are converted into RDF

object properties that domain is class corresponding to the
field domain and range is class corresponding to user-defined
information for the manual referencing field. In Table 1, a
user defines the referenced collection “reviews” and
referenced field “_id” of the manual referencing field
“review_id” by providing extra information. The manual
referencing field is converted into the RDF object property,
domain of which is a class corresponding to the field domain,
and the range is corresponding to the referenced collection
“reviews”.

Rule 6: ∀ k ∈ KA → φ(k) ∈ ROP AND Dxiomφ(k) =

φ(DF(k))AND Rxiomφ(k) = rdf: Seq.

For each array field, create a object property and map
field value to Seq, an RDF container.

Rule 7: ∀ c ∈ C, d ∈ D(c) → φ(V(d. _id)) ∈ RI.
For each document of a collection, create an RDF

individual from document identifier (is always field “_id”).

Rule 8: ∀c ∈ C, d ∈ D(c), ki ∈ α(d) ∩ KB, kj ∉ α(d) ∩

KB → φ(V(ki)) ∈ RL AND φ (V(kj)) ∈ RI.

With this rule, each field value of the document is
converted into an RDF individual or a literal. When the field
belongs to a basic type field, it will be transformed into a
literal. Otherwise, the field value will be mapped into an
RDF individual. For example, when the field belongs to the
array field, create a RDF container Seq and add each value in
array into the container.

On the basis of formal mapping rules above, it is not
difficult to develop the mapping algorithm from MongoDB
into RDF.

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 372

V. SYSTEM IMPLEMENTATION AND EXPERIMENTAL

ANALYSIS

A. System architecture

To validate our method of mapping MongoDB data to an
RDF model, we developed a prototype system named M2R,
which supports extracting the hierarchical structure of
MongoDB database data, mapping it to an RDF concept
layer, and transforming document data into RDF instance.

Fig. 1. The system architecture of M2R

As shown in the Fig. 1, the system mainly consists of
four modules: database access module, database editing
module, RDF construction module and query module.

(a) Database access module: The database access module
obtains database connections with information including
database address, database port, username, authentication
database, and password. With the database connection, the
system can access data in MongoDB.

(b) Database editing module: The database editing
module executes the MongoDB statements entered by the
user to finish the basic operations called CRUD of
MongoDB.

(c) RDF construction module: This module constructs
RDF with the MongoDB database selected by a user. Firstly,
this module parses the documents in the database to extract
the hierarchical structure information of the database. Then,
the module uses the mapping rules and algorithms defined
above to convert the hierarchical structure to the RDF
concepts, turn the data to the RDF instance according to the
key-value data of the documents. Because without database
schema in MongoDB, this module converts each document
and gradually refine the built RDF concept until all
documents are parsed and mapped.

(d) Query module: This module processes MongoDB
query statement input by users. It converts the statement into
the corresponding SPARQL query statement and executes
the MongoDB query statement and SPARQL query
statement. At last, the verification module returns the results
of two queries.

The M2R is developed with OpenJDK 17.0.1 platform
and particularly its graphical user interface (GUI) is
exploited by using JavaFX. The M2R is implemented and
run with a PC (Intel i5-5200U (4) @ 2.700GHz, RAM 8 GB,
and ArchLinux system).

The screen snapshot of M2R running the MongoDB
database sample_analystics as an example is shown in Fig. 2.
Fig. 2 shows that the GUI of M2R contains three display
areas. In the left area, the TextArea displays the contents of
the MongoDB database. And the TextArea (in the upper
right) below the label “RDF Schema” shows the

corresponding RDF Concept such as Classes and Properties
in the form of RDF Turtle. The TextArea (in the lower right)
below the label “RDF Individual” exhibits the corresponding
RDF individuals.

Fig. 2. The screen snapshot of M2R

B. Experimental results

To verify the feasibility of converting MongoDB data
into RDF with OWL2 vocabulary, we collected 8 sample
databases provided by MongoDB officials covering finance,
geographic, and weather information. These sample
databases are shown in Table II. Compared with the
traditional relational database, one of the characteristics of a
document database is that it can store data nested in one
collection to represent a reference relationship. Yet,
relational databases need to associate multiple tables with
foreign keys to achieve the same effect. Therefore, the
measurement of the database considers the maximum nesting
depth of documents. These eight sample databases contain
different nested document depths, such as the
sample_geospatial with zero nested documents, which
records geographic information with simple geographic
latitude and longitude information.

TABLE II. SAMPLE DATABASE INFORMATION

sample database database size (MB) max nested depth

sample_airbnb 90 2

sample_analytics 15.79 2

sample_geospatial 3.48 0

sample_mflix 49.88 2

sample_restaurants 13.36 1

sample_supplies 4.13 1

sample_training 113.88 2

sample_weatherdata 16.15 2

We conducted a series of experiments with databases in
Table II and compared them with the work of [1] and [17].
Since [1] and [17] do not provide system source code, we
can only reproduce their research work as much as possible
according to their papers. We take “sample_training” as
example and Table III show the final experiment results. In
these tables, the first column represents the evaluating
indicator of constructed RDF by these methods, the second
column notes the result of our method, and the third to fifth
columns show the metric result of related work [1] and [17].
The cell value “Construct time” means time-consuming
specified in milliseconds of converting MongoDB to RDF
dataset. The cell value “Class” means the number of Class
that may be RDF Class, RDFS Class or OWL Class in the
converted RDF dataset by these methods. The cell value
“DatatypeProperty” means the number of DatatypeProperty
in the converted RDF dataset. The cell value
“ObjectProperty” means the number of ObjectProperty in the

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 373

converted RDF dataset. The cell value “Property domain”
means the number of Domain axiom in the converted RDF
dataset. The cell value “Property range” means the number
of Range axiom in the converted RDF dataset. The cell value
“triple number” means the size of the converted RDF dataset.
The result of above tables shows that our is slightly inferior
to [1] and [17] in conversion speed, but it far exceeds them in
the integrity of the built RDF. particularly, our method can
construct a better RDF model with more Class,
DatatypeProperty, ObejctProperty, domain axiom and range
axiom triples.

TABLE III. COMPARING RESULT WITH RELATED WORK ABOUT

SAMPLE_TRAINING DATABASE

Evaluating indicator Our Method (M2R) [1] [17]

Construct time (ms) 66837 53181 46785

Class 38 15 7

DatatypeProperty 172 65 82

ObjectProperty 37 8 0

Property domain 209 73 0

Property range 209 73 0

Triple 6535861 2410669 2229094

Construct time (ms) 66837 53181 46785

To check the feasibility of our method, we construct
some SPARQL queries on the converted RDF. In Table IV,
we select a set of MongoDB query statements, construct the
corresponding SPARQL statement as shown in Table V to
query the RDF dataset created from MongoDB, and verify
the correctness and integrity of the mapped RDF data. If the
SPARQL query results match the MongoDB query results,
then we would hold the conversion is valid and correct.

TABLE IV. QUERIES OF MONGODB WITH SAMPLE DATABASE SAMPLE

ANALYTICS

Query 1: Return the name and birthdate of the custom called

“serranobrian”
db.customers.find({username: “serranobrian”},{name: 1, birthdate: 1})

Query 2: Extract one customer information with properties username,

name, address

db.customers.findOne({}, {username: 1, name: 1, address: 1})

Query 3: Return purchased product information of the account with id

170945

db.accounts.find({account id: 170945},{products: 1})

Query 4: Return the purchased product information of each account of

the customer called “serranobrian”

result = db.customers.findOne({username: “serranobrian”},{accounts:
1})

db.accounts.find({account id: {$in: result.accounts}},{account id:

1,products: 1})

Query 5: Return transcation information with field “date” and “code” in
collection transcations with account id 209363

db.transcations.find({account id:209363},

{“transaction.date”:1,“transaction.code”:1})

Query 6: Return transcation information with field “date” and “code” in

collection transcations with account id 209363 in the form of DBRef

db.transactions.find({account_id:DBRef(“accounts”,209363)},{“transa
ction.date”:1, “transaction.code”:1})

TABLE V. SPARQL REPRESENTATION OF QUERIES Q1-Q6

Query 1: SELECT ?name ?birthdate

WHERE {

?customer rdf:type ns:customer .
?customer ns:has-username “serranobrian”ˆˆxsd:string .

?customer ns:has-name ?name .

?customer ns:has-birthdate ?birthdate .}

Query 2: SELECT ?username ?name ?address
WHERE {

?customer rdf:type ns:customer .

?customer ns:has-username ?username .
?customer ns:has-name ?name .

?customer ns:has-address ?address . }
LIMIT 1

Query 3: SELECT ?product

WHERE {

?account rdf:type ns:accounts .
?account ns:has-accountId “170945”ˆˆxsd:int .

?account ns:ref-products/(rdf:rest*/rdf:first)* ?products . }

Query 4: SELECT ?accountId ?product
WHERE {

?customer rdf:type ns:customers .

?customer ns:has-username “serranobrian”ˆˆxsd:string .
?customer ns:ref-accounts/(rdf:rest*/rdf:first)* ?account .

?account rdf:type ns:accounts .

?account ns:has-account id ?accountId .
?account ns:ref-products/(rdf:rest*/rdf:first)* ?products . }

Query 5: SELECT ?date ?code

WHERE {

?transactions rdf:type ns:transactions .
?transactions ns:has-accountId “209366”ˆˆxsd:int .

?transactions ns:ref-transaction/(rdf:rest*/rdf:first)* ?transaction .

?transaction rdf:type ns:transaction .
?transaction ns:has-date ?date .

?transaction ns:has-transaction code ?code . }

Query 6: SELECT ?date ?code
WHERE {

?account rdf:type ns:accounts .

?account ns:has-accountId 209363ˆˆxsd:int .
?transactions rdf:type ns:transactions .

?transactions ns:ref-account id ?account .

?transactions ns:ref-transaction/(rdf:rest*/rdf:first)* ?transaction .
?transaction rdf:type ns:transaction .

?transaction ns:has-date ?date .

?transaction ns:has-transaction code ?code . }

Tables VI show the results of query Q4 in Table IV. The
SPARQL queries in these tables include all of the
information consistent with MongoDB queries. In Query 4,
for example, the MongoDB query gets all accounts
information stored in an Array of the customer
“serranobrian”, and then query purchased products by each
account. The MongoDB query returns two accounts that the
one purchased three products and the other one purchased
two products.

TABLE VI. MONGODB AND SPARQL RESULTS OF QUERY 4

{“_id”:ObjectId(“5ca4bbc7a2dd94ee58162456”), “account_id”:

170945, “products”: [“Derivatives”, “Commodity”,

“InvestmentStock”] }

{“_id”:ObjectId(“5ca4bbc7a2dd94ee58162457”), “account_id”:

951849, “products”: [“Brokerage”, “InvestmentStock”] }

accountId product

“170945”ˆˆxsd:int

“170945”ˆˆxsd:int

“170945”ˆˆxsd:int

“951849”ˆˆxsd:int

“951849”ˆˆxsd:int

“Derivatives”

“Commodity”

“InvestmentStock”

“Brokerage”

“InvestmentStock”

We illustrate briefly that our construction method is

valid, correct, and better than related work for constructing

RDF with MongoDB, especially when the database has a

complex structure. And we also demonstrate that we can use

the converted RDF data to finish the same work as in

MongoDB.

Quality assessment of RDF data is crucial because many
applications such as intelligent search, recommendation
systems, and smart medical treatment may not take full
advantage of low-quality RDF dataset [15]. To evaluate the
quality of converted RDF, we first manually build an

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 374

ontology with sample database sample_mflix followed by
Ontology Development 101 that is a guide to build an
ontology. The reason for choosing the database is that this
database is designed for MongoDB rather than simple
migration from other kinds of databases such as relational
databases which data model is different from MongoDB.
Then we choose three metrics, precision, recall, and F-
measure adapted from information retrieval.

 precision =
|𝑅∩𝑇|

|𝑇|
, recall =

|𝑅∩𝑇|

|𝑅|

 F − measure = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

In metrics precision and recall, the R denotes the
manually built ontology, and T denotes converted RDF data
with our method. |R| denotes the triple number of R , |T|
denotes the triple number of T, and |R ∩ T| denotes same
triple number between R and T.

Fig. 3. Comparison of three metrics between our method and related work

on sample_mflix

Fig. 3 presents the metrics result between our method and
other related work. Our approach performance is better than
related work. For example, the F-measure of our method is
96.69% that is higher than 51.43% of [1] denoted by
M2Onto and 50.85% of [17] denoted by M2SW. The main
reason is that our method constructs RDF Classes and
Properties with relationships modelled by embedding and
referencing and generates RDF containers to represent Array
data of MongoDB. For example, our approach can construct
RDF ObjectProperty by receiving user input information
about the manual reference relationship.

VI. CONCLUSIONS AND FUTURE WORK

With the rapid development of Web-based applications,
data is increasing so dramatically that many people prefer
NoSQL databases rather than relational databases to solve
the data management problems brought by big data.
MongoDB occupies most of the application market for
NoSQL databases. Therefore, converting MongoDB data to
RDF can effectively use the data and solve insufficient
available RDF data. This paper focuses on the characteristics
of MongoDB and RDF, proposes formal definitions of the
MongoDB data model and RDF model, and then design an
algorithm to map MongoDB hierarchy and data to RDF.
With the proposed transformation method, we implemented a
prototype system named M2R and carried out experiments to
verify the feasibility of the work. Experimental results show
the feasibility of constructing RDF with MongoDB. In our
future work, we will try to optimize the implementation of
the mapping algorithm to improve the efficiency of the

mapping process and enhance the speed of transformation.
We will also consider extending the method to support more
document database transformations, not just MongoDB.

ACKNOWLEDGMENT

The work was supported in part by the National Natural
Science Foundation of China (62176121 and 61772269).

REFERENCES

[1] Abbes H, Gargouri F. Big data integration: A mongodb database and
modular ontologies based approach. Proceedings of the 20th
International Conference KES-2016, York, UK, 5-7 September 2016,
Procedia Computer Science, vol 96. Elsevier, pp 446-455.

[2] Antoniou G, van Harmelen F. A semantic web primer. MIT Press,
2004.

[3] Berners-Lee T, Hendler J, Lassila O. The semantic web. Scientific
American 284(5):34-43.

[4] Bischof S, Decker S, Krennwallner T, et al. Mapping between RDF
and XML with XSPARQL. J Data Semant 1(3):147-185.

[5] Bytyçi E, Ahmedi L, Gashi G. RDF mapper: Easy conversion of
relational databases to RDF. Proceedings of the 14th International
Conference on Web Information Systems and Technologies, WEBIST
2018, Seville, Spain, September 18-20, 2018. SciTePress, pp 161-165.

[6] García-González H, Gayo JEL. Xmlschema2shex: Converting XML
validation to RDF validation. Semantic Web 11(2):235-253.

[7] Gupta R, Gupta H, Mohania MK. Cloud computing and big data
analytics: What is new from databases perspective?, First
International Conference on Big Data Analytics, New Delhi, India,
December 24-26, 2012.

[8] Huang J, Lange C, Auer S. Streaming transformation of XML to RDF
using xpath-based mappings. Proceedings of the 11th International
Conference on Semantic Systems, Vienna, Austria, September 15-17,
2015.

[9] Jabbari S, Stoffel K. Ontology extraction from MongoDB using
formal concept analysis. In: 2017 2nd International Conference on
Knowledge Engineering and Applications. IEEE, London, pp 178-182,
2017.

[10] Kharrat M, Jedidi A, Gargouri F. A semantic approach for
transforming XML data to RDF triples. 14th IEEE/ACIS International
Conference on Computer and Information Science, Las Vegas, NV,
USA, June 28 - July 1, 2015. IEEE Computer Society, pp 285-290.

[11] Lisena P, Troncy R. Transforming the JSON output of SPARQL
queries for linked data clients. Companion of the Web Conference
2018 on The Web Conference 2018, Lyon , France, April 23-27, 2018.
ACM, pp 775-780.

[12] Liu Y, Hong Z. Mapping XML to RDF: An algorithm based on
element classification and aggregation. Journal of Physics:
Conference Series 1848(1):012,012.

[13] Ma Z, Capretz MAM, Yan L. Storing massive resource description
framework (RDF) data: a survey. Knowl Eng Rev, 31(4): 391-413.

[14] Méndez SJR, Haller A, Omran PG, et al (2020) J2RM: an ontology-
based json-to-rdf mapping tool. Proceedings of the ISWC 2020
Demos and Industry Tracks: From Novel Ideas to Industrial Practice
co-located with 19th International Semantic Web Conference,
Globally online, November 1-6, 2020 (UTC), CEUR Workshop
Proceedings, vol 2721. CEUR-WS.org, pp 368-373.

[15] Sejdiu G, Rula A, Lehmann J, et al. A Scalable Framework for
Quality Assessment of RDF Datasets. ISWC 2019. Springer
International Publishing, Cham, Lecture Notes in Computer Science,
pp 261-276.

[16] Sequeda JF, Arenas M, Miranker DP. On directly mapping relational
databases to RDF and OWL. Proceedings of the 21st World Wide
Web Conference 2012, Lyon, France, April 16-20, 2012. ACM, pp
649-658.

[17] Soussi N, Bahaj M. Exploiting nosql document oriented data using
semantic web tools. Advanced Intelligent Systems for Sustainable
Development (AI2SD’2018). Springer, Cham, pp 110-117.

[18] Yan L, Sheng J, Tu Y, et al. Automatic construction of RDF with web
tables. Expert Syst Appl 182:115, 200.

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 375

