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 Abstract—This study aimed to assess the generalization 
performance of a Metal Health Monitoring system, which 
is crucial for practical applications. Previous research has 
not thoroughly examined this aspect of performance. To 
enhance the system's performance, we conducted 
experiments using 90 metal pieces, anticipating improved 
results with increased sample size. The pieces were divided 
into nine classes, representing undamaged and damaged 
conditions at eight different positions. Vibration 
waveforms were obtained by attaching piezoelectric 
sensors to the pieces. The waveforms were then split into 
training and evaluation datasets, and a neural network 
(NN) was trained on the former to classify the latter. The 
findings revealed that the NN achieved a remarkable 
accuracy of up to 80.6% in classifying the damage 
positions, even for metal pieces not included in the 
training set. These results indicate a high level of 
generalization performance in the Metal Health 
Monitoring system. 
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I. INTRODUCTION 
The number of vacant houses in Japan has continued to 

increase due to the aging of the population and the shift to 
nuclear families, and this has become a social problem. In 
addition, these buildings have become dilapidated and are in 
danger of collapsing due to natural disasters. A further 
problem is the management of vacant houses. Manually 
managing vacant houses individually requires an enormous 
amount of time, human effort, and costs. The system proposed 
in this research manages vacant houses by attaching sensors 
to them [1]. We focus on the braces, beams, and columns 
inside the walls of houses, which are very important for 
earthquake resistance, and aim to locate the damaged parts. 
Furthermore, a remote and real-time monitoring and 
management system is expected in the future by installing a 
module that combines a sensor and an artificial intelligence 
(AI) chip with a communication system [2]. In a previous 
study, the authors focused on braces in timber buildings [3]. 
Using a multi-layer neural network (NN) in machine learning, 
we were able to achieve a maximum damage identification 
rate of 83.8% for untrained wood samples by training it on the 
vibration waveforms of the wood. In this study, we focused on 
steel-frame buildings, which are expected to account for a 
growing proportion of buildings in the future, and researched 
health monitoring of metal building materials that emulates 
braces. Iron, which is a common material in construction, was 

chosen for the metal component. Wood and metal are different 
materials, each with their own unique characteristics. 
Extending the research conducted on wood to metal makes it 
possible to compare the properties and behaviors of the 
materials. This allows us to understand the specific 
characteristics, advantages, and limitations of metal. While 
iron is a strong material, it can deform or be damaged by 
significant force or external impacts. Common types of 
damage to iron structures include bending, fractures, and 
damage to joints. In the case of aging buildings, damage can 
also occur in iron structures, and due to iron having higher 
rigidity than  wood, the entire building or partial structure may 
collapse during a collapse event. This is particularly relevant 
in earthquake-prone countries like Japan, where there is a high 
risk of building collapse. The aim of this investigation and 
study is to address these challenges through the improved 
generalization performance of an AI system, rather than 
relying solely on human intervention. 

 

II. EXPERIMENT SUMMARY 

A. Data Acquisition 
 In pattern recognition, obtaining generalization 
performance is the ultimate goal for accurately identifying 
unknown data on the basis of training data. This is because 
the data that can be used for training is only a part of the 
whole when applied to the system. This is also true for steel 
pipe health monitoring systems. It is not practical to damage 
the metal installed in a house to obtain data. Therefore, 
sufficient generalization performance needs to be obtained 
with pre-prepared metals. 

We prepared 90 pieces of steel commonly used in 
construction materials as shown in figure 1(a). Each 
rectangular pipe piece emulates a brace and is 1000 mm long, 
40 mm wide, 30 mm high, and 1.5 mm thick. Each piece was 
marked and divided into ten equal sections of 100 mm each, 
and one of the eight central sections, excluding the two ends, 
was damaged (Figure 1(b)). The sections were classified into 
nine classes: undamaged (class 0) and damaged (classes 1~8) 
(10 pieces per class) (Figure 1(c)). 
 As shown figure 2(a), a piezoelectric sensor was mounted 
on the end to observe and record the vibration waveform of 
the metal using an oscilloscope. In addition, as shown figure 
2(b), a vibration motor was fixed to the opposite end of the 
piezoelectric sensor with a rubber strap. Figure 2(c) shows 
the entire observation system. 
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 The vibration motor is used to continuously vibrate the 
metal, and the sensor detects the vibration transmitted 
through the metal. The power output waveform of the sensor 
is observed and recorded by an oscilloscope, and machine 
learning is used to identify the class of damage. The 
waveform of the voltage for 2.5 × 102 ms was sampled and 
recorded at 2500 points, and 50 recordings were made for 
each metal piece, resulting in a total of 4500 vibration data. 
 

 
(a) 

 
(b)                                               (c) 

Fig. 1 Prepared steel sample pieces. (a) Ninety pieces with 
the same shape were prepared and divided into nine classes 
(b) A hole in a piece of steel was drilled to represent damage. 
(c) Illustrated example of a Class4 piece of steel.  
 

    
(a)                                                    (b) 

 
(c) 

Fig. 2 (a) A motor attached to the end of a steel pipe. (b) A 
piezoelectric sensor was attached to the oppsite end of a steel 
pipe to read the vibration waveform using an oscilloscope. (c) 
Metal vibration waveform observation system. 

B. Machine Learning 
 Since the goal of this study is to classify waveforms with 
patterns like MNIST [4], NNs were used as the learning 
model for machine learning. A NN is a machine-learning 
algorithm that mimics the human nervous system. It can be 
used to find an output from an input. In object recognition, a 
convolutional NN (CNN) such as AlexNet is known to have 
high performance [5]. However, since a simple NN is best 
suited for our proposed system, we used a simple fully-
connected NN without convolutional layers and trained the 
waveforms as a 1D array (Figure 3). 
 Each of the 4500 data acquired contains sampled 
waveform data as 2500 features. A feature value is a variable 
or attribute that represents an important feature to show the 
data. The input layer contained the voltage waveforms of the 
2500 feature values obtained with an oscilloscope, and the 
number of intermediate layers and neurons was changed 
within a specified range depending on the experiment to run 
the program.  
 Figures 4 (a) and (b) represent vibration waveforms 
obtained from different metals in a Class 0 (undamaged) 
condition. Both waveforms have similar overall shapes, but it 
can be observed that (a) has a slightly larger difference 
between the maximum value of 13 and the minimum value of 
-14. (c) depicts a vibration waveform from Class 1. Upon 
examining the overall shape of the waveform, there is no 
significant difference in the main waveform frequency 
compared with (a) and (b) in Class 0. However, the Class 1 
waveform evidently has higher frequency vibrations present 
in the finer waveform riding on top of the main waveform 
than Class 0 in (a) and (b). (d) represents a vibration 
waveform from Class 8, where it is notable that small and fine 
waveforms are uniformly present within the larger waveform. 
 As demonstrated, vibration waveforms are expected to 
exhibit different characteristics depending on the metal and 
the location of the damage. In this study, we chose to train the 
NN using the waveform itself as a feature, without extracting 
any specific features from it. The output layer was set to 9 
because of the 9-class classification from 0 to 8, and the 
softmax function was applied. The optimization algorithm 
was the gradient descent method, the activation function was 
tanh, the loss function was a cross-entropy error, and the NN 
program was created in MATLAB. Information about the 
PCs used for the experiments in this study (CPU, GPU, and 
Matlab version) is given in the following table (Table 1). 
 In addition, the number of layers in the middle layer of this 
NN (1~7) and the number of neurons in the middle layer 
(10~4096) were changed along with the configuration. In this 
study, the evaluation was based on the high discrimination 
rate when the test data was classified into nine classes after 
training. 
 
 Table 1 Information about the PCs used for the experiments 

CPU 1.6 GHz dual-core Intel Core i5 

GPU Intel UHD Graphics 617 1536 MB 

Matlab ver. 2022b 
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Fig. 3 Simplified diagram of a fully-connected NN. 
 

  
(a)                                         (b) 

  
(c)                                          (d) 

Fig. 4 Acquired vibration waveforms. (a)(b) Class 0. (c) 
Class 1. (d) Class 8 
 

C. Generalization Performance 
 Generalization performance is the ability of a machine-
learning model to make correct predictions on data it has not 
seen before during training. Here, we describe a method for 
validating the generalization performance of a NN using 
measured metal vibration waveform data. All training and 
evaluation were performed using MATLAB.  
 In each validation, we completely separated the training 
and testing metals, and the improvement in the discrimination 
rate was considered an improvement in the generalization 
performance. The discrimination rate was calculated by 
taking the average of five runs of the program, and for cross-
validation, there were five ways to select the test data, and the 
average was used as the discrimination rate for the results of 
this study. 
 

D. Smoothing of Waveform Data and Generalization 
Performance 

 In figure 5, (a) and (b) show the vibration waveforms of 
wood and metal when vibrations of a similar magnitude were 
applied. Comparing the two, we can see that the amplitude of 
the metal waveform is smaller with more noise. This indicates 

that the noise will affect the discrimination rate even if the 
NN is trained as it is.  
 Therefore, to simplify learning, the waveforms were 
smoothed before input to the NN, and the discrimination rate 
was evaluated. The Savitzky-Golay filter and simple moving 
average were used for waveform smoothing, and the range of 
the moving average for the Savitzky-Golay filter was 
changed from 11 to 1001 and from 5 to 1500 for the simple 
moving average to evaluate the generalization performance. 
 

III. EXPERIMENTAL RESULTS AND EXAMINATION 

A. Smoothing of Waveform Data and Generalization 
Performance 

 In figure 6, (a) and (b) show the results of smoothing using 
the Savitzky-Golay filter and simple moving average, 
respectively. 
 Figure 6 (a) shows that the Savitzky-Golay filter has a 
maximum discrimination rate of 62.9% when the range is 41. 
This error of nearly 10% is due to the fact that when the range 
is too small, the noise is not fully removed, while when the 
range is too large, the waveform features are lost. 
 Also, figure 6 (b) shows that the simple moving average 
had a maximum discrimination rate of 67.8% when the range 
was set to 900. The discrimination rate decreased when the 
range was smaller or larger than 900. This may be due to the 
same reason as for the Savitzky-Golay filter. 
 As previously shown, both the Savitzky-Golay filter and 
the simple moving average smoothing improved the 
discrimination rate significantly compared with the case 
without smoothing. This is because the metal vibration 
waveforms have small amplitude and are subject to large 
noise, so smoothing was effective in eliminating the noise. 
 Comparing the discrimination rates, the simple moving 
average improved by up to 11.9% before smoothing, while 
the Savitzky-Golay filter improved by up to 7.0%, suggesting 
that smoothing with the simple moving average is the best 
choice for the model in this study. 
 

B. Investigation of the Relationship Between the Number of 
Neurons and the Discrimination Rate 

 In a NN with one middle layer, the number of neurons was 
changed from 10 to 4096 for testing. The schematic and 
results are shown in Figures 7 and 8. 
 Figure 8 shows that the discrimination rate continues to 
improve as the number of neurons increases up to around 1024. 
On the other hand, when the number of neurons increases 
beyond 1024, the improvement in the discrimination rate 
stagnates, and the discrimination rate converges to about 80%. 
From this, the identification rate can be predicted to remain at 
 

  
(a)                                         (b) 

Fig. 5 Vibration waveforms. (a) Wood. (b) Steel pipe. 
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(a) 

 
 (b) 

Fig. 6 Relationship between smoothing and identification rate. 
(a) Savitzky-Golay filter. (b) Simple moving average. 
around 80% even when the number of neurons is increased 
beyond 4096. 
 
 Therefore, when the middle layer is set to one layer, the 
discrimination rate improves up to a certain level as the number 
of neurons is increased. After that, however, the discrimination 
rate does not improve no matter by how much the number of 
neurons is increased, and it is expected to converge to a certain 
discrimination rate (80% in this experiment). 
 

C. Investigation of the Relationship Between Intermediate 
Layers and Discrimination Rate 

 Next, in addition to the number of neurons in the middle 
layer, the number of layers was changed from 1 to 7. Since 
there are countless combinations of the number of neurons 
and that of layers, only specific cases are shown. If the 
number of neurons in the first intermediate layer was ′𝑛!, the 
number of neurons in the second and subsequent layers was 
set to ′𝑛/2!	 when verifying more than two layers. In addition, 
five patterns of ′𝑛! were prepared (32, 64, 128, 256, and 512), 
and the average discrimination rate was used. The schematic 
diagram and results are shown in Figures 9 and 10, 
respectively. 
 Figure 10 shows that as the number of middle layers is 
increased, the discrimination rate stabilizes at around 80%. 
When the number of neurons is small, the discrimination rate 
continues to improve as the number of middle layers increases, 
but when n=128, the discrimination rate stagnates after middle 
layer 3, and when n=256 and 512, the discrimination rate 
stagnates after middle layer 2. 

 
Fig. 7 Neural network with one middle layer. 

 
Fig. 8 Relationship between the number of neurons and 
discrimination rate. 
 
 As for n=512, the discrimination rate gradually decreased as 
the number of middle layers increased. This may be due to 
overlearning caused by the complexity of the model due to the 
increase in the number of layers and neurons. For this 
experiment, it is appropriate to terminate the experiment at 
middle layers 2 and 3, where the discrimination rate continues 
to improve and is near the maximum point of the graph's rough 
shape. By doing so, we consider that overlearning can be 
prevented. 
 For increasing the number of middle layers, the relationship 
between the number of middle layers and that of neurons could 
not be clarified to improve the discrimination rate while 
preventing overlearning. 
 

D. Effectiveness of Smoothing for Experiments B and C 
 Tables 2 and 3 summarize the discrimination rates for B and 
C, respectively. 
 Table 2 shows that the best discrimination rate for B is 
79.0% with one middle layer and 1024 neurons. When the 
program was run without smoothing and with all other 
conditions being the same, the discrimination rate was 74.7%, 
a decrease of 4.3%. 
 Table 3 also shows that the optimal maximum 
discrimination rate in C is 80.6% with middle layer 4 and 
n=128 neurons. At this time, when the program was run 
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without smoothing and with the same other conditions, the 
discrimination rate was 71.8%, a decrease of 8.8%. 
 From the aforementioned results, the smoothing of 
vibration waveforms is clearly very effective in improving the 
discrimination rate when learning vibration waveforms in this 
model, since it decreased without smoothing in both 
experiments B and C. 

 

Fig. 9 NN with varied middle layers. 

 

Fig. 10 Relationship between the middle layers and 
discrimination rate. 
 
Table 2 Discrimination rates for one middle layer and varied 
number of neurons. 

Neurons 256 512 1024 2048 4096 
l=4 69.2  73.3  77.3  77.5  79.4  
l=3 75.6  83.3  85.4  85.1  85.1  
l=2 67.2  72.3  80.2  80.2  80.2  
l=1 75.6  78.8  81.3  81.5  81.6  
l=0 65.7  66.9  70.6  72.5  72.5  
Average 70.6  74.9  79.0  79.4  79.8  

 

E. Comparison of Metal and Wood 
 Although the wood used in the previous study and the steel 
pipe used in this study are different in shape and material, we 
consider that we were able to obtain a generalization 
performance that can produce a sufficient discrimination rate,  

Table 3 Discrimination rates for varied middle layers and 
fixed number of neurons n=32, 64, 128, 256, 512. 

Middle 
Layer 1 2 3 4 5 6 7 

n=512 74.9  78.9  79.2  78.6  78.4  77.8  78.5  

n=256 70.6  79.3  79.7  79.7  78.8  78.9  79.7  
n=128 66.3  75.1  80.0  80.6  80.4  80.4  80.6  

n=64 60.0  65.3  72.2  75.2  78.5  79.5  80.3  

n=32 51.3  54.3  55.6  61.7  61.7  66.3  62.2  
 
with a maximum discrimination rate of 80.6% for the steel 
pipe compared with 83.8% for the wood [3]. 
 The reason for the 3.2% lower value for the metal is due to 
metal having a smaller amplitude of the vibration waveform 
than wood, which results in a larger effect of noise. This 
difference in amplitude is assumed to be due to the difference 
in the magnitude of intrinsic acoustic resistance. The intrinsic 
acoustic resistance is like the impedance in an electric circuit 
and is an indicator of the resistance to transmission of 
vibrations from the outside. In other words, the smaller this 
value is, the easier it is for vibration to be transmitted. The 
intrinsic acoustic resistance values of wood and metal are as 
follows. 
・Wood: 0.25 × 107 ~ 0.55 × 107 

・Metal (steel): 4.8 × 107 

 Therefore, it can be seen that metal has a higher intrinsic 
acoustic resistance than wood. Therefore, it is difficult for 
external vibrations to be transmitted, and the amplitude of the 
vibration waveform becomes small. As a result, the noise 
becomes larger, and the different features of the waveforms 
are difficult to distinguish depending on the damaged area, 
making the damaged area difficult to identify using a NN. 

IV. CONCLUSION 
 The study was conducted to acquire and improve 
generalization performance in steel pipe health monitoring. 
The aforementioned results show that (1) the discrimination 
rate can be improved by smoothing the vibration waveform 
before learning because the vibration waveform of metal has 
a small amplitude and is greatly affected by noise. (2) In the 
one middle layer, the larger the number of neurons, the higher 
the discrimination rate, but when the number of neurons 
exceeds a certain value (1024 neurons in this model), the 
discrimination rate converges (80% in this model). (3) When 
increasing the number of middle layers, the discrimination 
rate is improved by adjusting the combination of the middle 
layers and the number of neurons. (4) In both experiments B 
and C, smoothing improved the discrimination rate and thus 
strengthened the effectiveness of the smoothing shown in A. 
This is a good example of a system that can be used to 
improve the discrimination rate. (5) This model (proposed 
system) can obtain generalization performance for not only 
wood, which was verified in the previous study, but also 
metal.  
 It was also determined that the performance of the system 
could be improved by using a simple NN and acquiring data 
from a large number of samples. We believe that the proposed 
system could be applied to building materials other than 
wood and metal. 
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