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Abstract—Wearable smart devices, such as smartphones and
smartwatches, offer great potential as platforms for automated
human action identification. However, accurately monitoring
complex human actions on these devices poses a challenge due to
the presence of similarities in patterns across different actions.
This occurs when distinct human actions exhibit comparable
signal patterns or characteristics. The placement of motion
sensors on the body plays a crucial role in detecting human
behavior. Typically, wearable sensors placed at the trouser
pocket or a similar location are used for this purpose. However,
this positioning is not suitable for identifying actions involving
manual gestures. To address this, wrist-worn motion sensors
are employed to detect these specific behaviors. This study
aims to investigate the effectiveness of deep learning models
in accurately categorizing complex human actions using sensor
data from wrist-worn devices. Nine deep learning models uti-
lizing convolutional neural networks and recurrent neural net-
works were examined for their identification capabilities. The
models were evaluated using the WHARF dataset, a publicly
available benchmark dataset for human activity recognition.
The investigation revealed that the proposed CNN-BiGRU
model outperformed other deep learning models, achieving an
accuracy rate of 87.20% and an F1-score of 84.46%.

Keywords—complex activity recognition, human activity
recognition, wrist-worn sensor, deep learning, hybrid deep
learning

I. INTRODUCTION

The advancements in wearable technologies have made
smartwatches a valuable tool for universal computing, partic-
ularly in managing wellness in daily life. Smartwatches, worn
on the wrist, are electronic devices equipped with multiple
sensors that enable continuous monitoring of an individual’s
activities [1]. This technology has found beneficial applica-
tions in various areas, such as medical care tracking [2] ,
fitness and sports monitoring [3], and behavior management
[4]. In the realm of medical care, the ability to identify
physical activities through sensor data from smartwatches has
played a significant role in mitigating the negative effects of
unhealthy lifestyles. For instance, monitoring an individual’s
eating-related activities has been recognized as a potentially
valuable factor in treating various illnesses, including cancer,
diabetes, obesity, and heart attacks [5], [6].

Individual bodily activity refers to the various states of the
human body, including but not limited to running, strolling,
and resting. Human activity recognition (HAR) is a current
area of scholarly investigation that centers on the automated
identification or evaluation of a specific individual user’s
actions through the analysis of relevant sensor data [7],
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[8]. The process of identifying activities through wearable
sensors placed on different body areas or embedded in
personal devices such as smartphones, sports bracelets, and
smartwatches is known as sensor-based activity recognition
[9], [10].

The use of wearable sensors in HAR has traditionally
posed challenges in classifying multivariate time-series data.
Feature extraction plays a crucial role in addressing this
challenge and can be accomplished through statistical tech-
niques in both the frequency and time domains [11]. Con-
ventional machine learning techniques like Naive Bayes,
decision trees, and support vector machines have proven
effective in accurately categorizing various human actions
[12]. However, manual feature extraction requires specific
domain knowledge or expertise, limiting their ability to
detect distinctive characteristics for complex actions [13].
To overcome this limitation, deep learning approaches have
employed convolutional neural networks (CNNs) to auto-
matically extract abstract features from sensor data in the
early stages of HAR research [14]. While CNNs excel in
interpreting the spatial domain of sensor data and performing
well for basic activities, they struggle to capture temporal
characteristics essential for complex actions [15]. Conse-
quently, recurrent neural networks (RNNs) are utilized in
HAR to extract temporal information from wearable sensor
data, addressing the temporal aspect [16]. Training RNNs
poses a challenge due to vanishing or exploding gradients,
which is addressed by the long short-term memory (LSTM)
neural network architecture. Recent studies in HAR have
successfully employed LSTM models to improve recognition
abilities [17]. To mitigate the limitations of both CNNs and
RNNSs, hybrid deep learning models have been developed
[18], [19].

This study presents a framework for recognizing complex
human activities using sensor data collected from a wrist-
worn wearable device. The framework aims to accurately
identify intricate behaviors. The study evaluates five deep
learning networks: CNN, LSTM, Bidirectional LSTM (BiL-
STM), Gated Recurrent Unit (GRU), and Bidirectional GRU
(BiGRU) in the context of complex activity recognition.
Additionally, a hybrid deep learning model called CNN-
BiGRU is proposed to improve identification effectiveness.
The investigation utilizes the publicly available WHARF
dataset, which includes accelerometer data capturing detailed
activity information from sixteen individuals.
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The subsequent sections of this paper are structured in the
following manner. Section II provides an overview of recent
literature on the topic. Section III provides a comprehensive
account of the proposed model’s specifics. The findings
from the experiment are presented in Section I'V. Section V
concludes this study and presents potential areas for further
investigation.

II. RELATED WORKS

In recent years, researchers have proposed various struc-
tures and techniques for identifying patterns in human move-
ment. Many of these frameworks rely on wearable devices,
particularly smartwatches, for activity recognition and track-
ing. This section provides important background information
on studies related to HAR that utilize sensors, along with
relevant research efforts in the field.

A. Complex Activity Recognition

In recent years, there has been a significant research focus
on HAR using motion sensors embedded in wearable devices
[20]. Additionally, there has been a growing interest in
utilizing smartphone sensors for HAR in recent studies [12].
Numerous investigations have explored the identification of
physical activities through wrist-worn devices. In a specific
study [21], researchers investigated the role of sensors in
smartwatches and smartphones for recognizing complex ac-
tivities.

Trost et al. [22] utilized both a wrist-worn sensor and a hip
sensor to identify seven specific physical activities. Logistic
regression was employed as the classification algorithm. The
authors successfully demonstrated the effectiveness of using
wrist positioning for activity recognition. However, it’s worth
noting that the assessment of these two positions was carried
out separately, without combining the data from both sensors.
In another study [23], the authors utilized a single wrist-worn
accelerometer to identify five different physical activities,
including sitting, standing, and running. Additionally, in a
related study [24], a wrist-worn accelerometer was used to
identify a total of eight activities, including the complex task
of computer usage .

In their study [25], the authors utilized a hidden Markov
model along with a wrist-worn accelerometer and gyroscope
to identify eating behavior. Eating activities were categorized
into sub-activities such as resting, ingesting food, drinking
liquids, using utensils, and related actions. The authors
reported an accuracy of 84.30% for their approach. Similarly,
Dong et al. [26] employed a combination of a wrist-worn
accelerometer and gyroscope to identify eating behavior.
They differentiated between eating and non-eating periods
and achieved an accuracy level of 81%. Additionally, Sen et
al. [27] used data from the accelerometer and gyroscope of
a smartwatch to distinguish eating periods from comparable
non-eating activities.

B. Deep Learning Approach for HAR

Despite the significant advancements achieved in HAR
through traditional machine learning methods, certain con-
straints and disadvantages exist. Initially, the characteristics
are obtained through a heuristic and manually designed
approach heavily dependent on human or domain-specific
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expertise. Furthermore, it is worth noting that solely su-
perficial characteristics can be derived based on human
proficiency. The aforementioned superficial characteristics
frequently pertain to various statistical parameters such as
the average, variance, maximum, minimum, and so forth.
The sensors cannot identify complex or contextually-relevant
actions and are primarily suited for detecting basic move-
ments such as strolling or jogging. Eating-related actions,
such as the consumption of spaghetti or water, exhibit a
high degree of complexity and prove challenging to discern
by applying shallow features alone. The utilization of deep
learning models has been observed to address the limitations
mentioned above effectively [28]. Moreover, the deep neural
network can extract high-level representations in deeper
layers, rendering it more appropriate for intricate activity
identification assignments.

The deep neural network (DNN) is an advanced form
of the artificial neural network (ANN) that stands out for
its increased depth. Unlike traditional ANNs, which have
a limited number of hidden layers, DNNs are composed
of a larger number of layers. This depth gives DNNs an
advantage in learning as it allows them to handle extensive
datasets more effectively. In complex models, DNNs are
often employed as a condensed layer. For example, in CNNSs,
it is customary to incorporate multiple dense layers following
the convolutional layers [29].

CNN is based on three fundamental concepts: sparse
interactions, parameter sharing, and equivariant representa-
tions. Following the convolution process, subsequent layers
typically include pooling and fully-connected layers that
undertake regression or classification functions. CNN has
demonstrated proficiency in extracting features from sig-
nals, yielding encouraging outcomes in image classification,
speech recognition, and text investigation. CNN exhibits
two benefits over alternative models when employed in the
context of time series classification, such as in the case
of the HAR task. These benefits are attributable to CNN’s
ability to capture local dependencies and scale invariance.
The concept of local dependency in the context of HAR
pertains to the likelihood of correlated signals nearby. On
the other hand, scale invariance pertains to the property of
remaining invariant across various rates or frequencies.

RNNSs are widely used in speech recognition and process-
ing of natural language to capture temporal relationships
between neurons. One common practice is incorporating
LSTM components into RNNs, where LSTM units serve as
memory units through gradient descent. Although few studies
have applied RNNs to HAR tasks [30], [31], these studies
primarily aimed to improve learning efficiency and minimize
resource usage.

The hybrid model combines multiple deep models, and
a new hybrid approach that has gained attention recently is
the fusion of CNNs and LSTM networks. In a referenced
study, the combination of CNNs and LSTM models showed
effective integration and improved performance compared to
using only CNNs with dense layers [32]. Similar findings
were reported in another studies [33]-[35]. CNNs excel at
capturing spatial relationships, while RNNs can leverage
temporal relationships. By integrating CNNs and RNNs, the
model’s capability to identify various activities with different
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durations and signal distributions can be enhanced.

III. THE PROPOSED FRAMEWORK

The present study employs a sensor-based HAR frame-
work consisting of four primary stages: data acquisition,
data pre-processing, data generation, and model training and
assessment, as depicted in Fig. 1.

A. WHARF Dataset

The dataset utilized in this study comprises wrist-worn
sensor data. It is publicly accessible under the name “ADL
Recognition with Wrist-worn Accelerometer Dataset,” com-
monly called the WHARF dataset [36]. The public can
access the above resource through the UCI Machine Learn-
ing Repository [37]. The present dataset solely comprises
accelerometer signals that were sampled at a frequency of 32
Hz. The dataset known as WHARF comprises 14 different
activities, which are itemized in Table I. The previous actions
were collected by a cohort of 16 volunteers, consisting of 11
male and 5 female individuals, whose ages ranged from 19
to 81 years. The individuals who participated were equipped
with a triaxial accelerometer affixed to their right wrists,
recording data at 32 Hz. The accelerometer readings are pre-
sented as a sequence of chronological data points, whereby
the classification of actions is determined by the signal
characteristics observed over a specific duration. Therefore,
the present task pertains to the identification of time series
data.

TABLE 1
14 ACTIVITIES OF THE WHARF DATASET

Type Activities
Bathroom use Clean teeth
Comb hair

Rise from the bed
Lie down on the bed

Transferring

Sit down on a chair
Stand up from a chair
Feeding Sip from a glass
Dine with utensils
Eat with spoon
Pour water into a glass
Telephone usage capability

Mode of transportation

Make a telephone call
Climb the stairs
Descend the stairs
Walk

B. Data Pre-processing

The raw sensor data underwent several pre-processing
steps. Initially, noise reduction was conducted by applying a
median filter and a 3rd order low-pass Butterworth filter, with
a cutoff frequency of 20 Hz. Furthermore, data normalization
was performed using the Min-Max method. Afterward, the
pre-processed sensor data were divided into segments using
a sliding window approach. The window had a fixed width
of 3 seconds, and an overlap ratio of 50% was applied.
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C. The Proposed CNN-BiGRU Model

In this study, five different deep learning networks were
investigated: CNN, LSTM, BiLSTM, GRU, and BiGRU. To
improve recognition effectiveness, a new deep learning archi-
tecture called CNN-BiGRU was introduced. This architecture
combines convolutional neural networks with bidirectional
gated recurrent units. Fig. 2 provides a visual representation
of the CNN-BiGRU design.

D. Training Deep Learning Models

In the context of deep learning, the model training proce-
dure involves using hyperparameters to regulate the learning
process. The present study employs a set of hyperparameters,
namely: (i) the number of epochs, (ii) batch size, (iii)
the rate of learning denoted by «, (iv) optimization, and
(v) loss function, in the model that has been suggested.
The hyperparameters were set by initializing the number of
epochs to 200 and the batch size to 128. If no enhancements
in the validation loss metric were observed following the
completion of 30 epochs, we implemented an early stopping
callback mechanism to terminate the training procedure. At
the outset, the learning rate was established as « = 0.001.
Subsequently, we increased it to 75% of its initial value if
the accuracy of the validation of the suggested model did
not exhibit any improvement over six consecutive epochs.
In order to reduce the level of error, the Adam optimizer
was employed with specific parameter values, namely, 51 =
0.9, B2 = 0.999, and € = 1 x 1078, The categorical cross-
entropy function is employed to compute the discrepancy in
the optimizer.

E. Performance Measurement Criteria

The use of a confusion matrix is a valuable tool in assess-
ing the recognition effectiveness of deep learning models,
as it provides a simple and straightforward visualization
of their effectiveness. The multi-class confusion matrix can
be mathematically represented as a matrix where the rows
correspond to the expected class instances and the columns
correspond to the actual class instances.

Ci1 Ci2 Ci13 Cin
C21 C22 C23 Con
C = |¢€31 C32 (33 C3n
Cnl Cn2 Cn3 Cnn

The confusion elements for each class are given by:
True positive: T'P

TP(C;) =Cy (1)
False positive: F'P
FP(C;) = icli —TP(C;) 2)
1=1
False negative: F'IN
FN(Ci) = zn:Cu —TP(C;) 3)
=1
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Fig. 1. The sensor-based framework based on wrist-worn sensors used in this work.
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Fig. 2. The architecture of the proposed CNN-BiGRU.

True negative: TN
n n
TN(C;) =Y ax—TP(C;)—FP(Ci)=FN(C;) (4)
1=1 k=1
The evaluation of the deep learning models employed
in this research was conducted through a confusion ma-
trix, which facilitated the computation of four conventional
performance metrics, including accuracy. The evaluation
of accuracy pertains to the depiction of systematic error.
The computation involves determining the proportion of the
combined number of true positives and true negatives to the
overall quantity of entries.
Accuracy: Acc

|Class| TP, + TN,

A
“« TP, + FP, + TN, + FN,

®)

- |Class]| % o

IV. EXPERIMENTS

All experiments in this study were carried out on the
Google Colab Pro+ platform using a Tesla V100. The de-
velopment of the Python programming language involved the
utilization of various libraries, including Python, TensorFlow,
Keras, Scikit-Learn, Numpy, and Pandas. The purpose of this
study is to investigate the identification capabilities of deep
learning models based on CNN and LSTM architectures.
Specifically, we aim to evaluate the impact of data sharing
on the data segmentation process. Five different step sizes,
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namely 25, 50, 100, 150, and 200, were employed for this
evaluation.

A. Experimental Findings

The WHARF dataset was created using a 5-fold cross-
validation approach. In this study, we conducted a series
of investigations to evaluate the performance of five key
deep learning models: CNN, LSTM, BiLSTM, GRU, and
BiGRU. Additionally, we introduced our proposed CNN-
BiGRU model. Table II presents the recognition values
achieved by each model, while Fig. 3 illustrates the confusion
matrices for all models.

TABLE 1T
IDENTIFICATION EFFECTIVENESS OF DEEP LEARNING MODELS USING
SENSOR DATA FROM THE WHARF DATASET

Model Recognition Performance

Accuracy % (£SD %) Loss F1-score % (=SD %)
CNN 82.35(1+0.53) 0.65(£0.03) 78.33(£0.99)
LSTM 74.95(£1.63) 1.06(£0.07) 70.55(£1.88)
BiLSTM 71.91(£1.19) 1.09(£0.06) 67.37(£1.64)
GRU 76.20(£1.43) 0.73(£0.03) 70.22(£1.51)
BiGRU 78.66(£0.96) 0.66(40.04) 73.61(£0.99)
CNN-BiGRU 87.20(£0.49) 0.50(£0.04) 84.46(+0.57)

The investigation revealed that the proposed CNN-BiGRU
model achieved a peak accuracy of 87.20% and a peak F1-
score of 84.46%. This model combines a CNN layer for
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Fig. 3. Confusion matrices of deep learning

extracting spatial features and a BiGRU layer for extracting
temporal features. The study employed confusion matrices
to analyze the model’s performance across different activity
types. The results indicate that the proposed model faced
challenges in accurately classifying transition activities, such
as “Get up from the bed,” “Lie down on the bed,” and
“Sit down on a chair” However, it demonstrated superior
performance in manual tasks involving utensils, such as
“Brush,” “Eat with fork and knife,” and “Eat with spoon.”

V. CONCLUSION AND FUTURE WORKS

This research aimed to identify complex activities us-
ing wrist-worn sensor data. Five deep learning models,
namely CNN, LSTM, BiLSTM, GRU, and BiGRU, were
examined, along with the newly proposed CNN-BiGRU, to
effectively classify these intricate activities. The evaluation
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models used in this study.

was conducted on the WHARF dataset, a publicly available
benchmark for HAR, which includes data from wrist-worn
sensors capturing 14 different activities. The results showed
that the CNN-BiGRU model achieved the highest accuracy
rate of 87.20%.

Future investigations could focus on validating these deep
learning models on alternative datasets with a larger number
of subjects exhibiting diverse complex patterns. To enhance
performance, there is potential for developing low-power and
lightweight deep learning networks, as well as implement-
ing innovative data representations based on time-frequency
analysis.
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