
Human Activity Recognition in Logistics Using
Wearable Sensors and Deep Residual Network

Sakorn Mekruksavanich1, Datchakorn Tancharoen2 and Anuchit Jitpattanakul3
1Department of Computer Engineering, School of Information and Communication Technology

University of Phayao, Phayao, Thailand
sakorn.me@up.ac.th

2Faculty of Engineering and Technology, Panyapiwat Institute of Management, Nonthaburi, Thailand
datchakorntan@pim.ac.th

3Intelligent and Nonlinear Dynamic Innovations Research Center, Department of Mathematics
Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand

anuchit.j@sci.kmutnb.ac.th

Abstract—Human action identification is a practical area of
study with broad applicability in various domains, such as
medical care, sport science, and manufacturing management.
In logistics, it is essential to identify and examine individual
actions, enabling machines to perceive and comprehend human
motions for non-verbal interaction. This study specifically fo-
cuses on efficiently classifying working activities in the logistics
industry using wearable sensors, particularly in the context of
human activity recognition. To achieve the research objective,
a deep residual neural network was introduced, integrating
convolutional layers, shortcut connections, and aggregated
transformation for human activity recognition in logistics. The
authors evaluated the effectiveness of their proposed deep
learning model using the publicly accessible LARa dataset. The
LARa dataset comprises a diverse range of human actions in
the logistics domain, including standing, walking, cart handling,
and synchronization. The details of activity were captured using
wearable sensors affixed to different anatomical sites of the
study participants. The experimental findings indicate that the
model achieved a maximum F-measure of 85.30%.

Keywords—deep learning, logistics, human activity recogni-
tion, wearable sensors

I. INTRODUCTION

The identification of autonomous employee actions
presents an opportunity to improve worker effectiveness in
terms of efficiency and security while also enhancing project
management capabilities. This procedure provides valuable
insights into understanding activity levels and identifying fac-
tors that can aid in project decision-making. These insights
prove helpful in various project management responsibilities,
including adapting project schedules, managing resources,
and exercising construction-related authority [1].

The increasing prevalence of automated processes in man-
ufacturing and logistics, along with the growing complexity
of manual procedures, has led to greater interaction between
humans and machines. Effective collaboration relies on inter-
action, encompassing both verbal and nonverbal connections.
Despite mistakenly assuming that the human element is
solely determinative in planning and modeling simulations,
it remains a critical factor in managing material systems.
To successfully execute a data-centric simulation that con-
siders the stochastic locomotion patterns of individuals, the
inclusion of temporal data is crucial. Instruments capable of
perceiving and understanding human motion play a vital role
in enabling non-verbal interaction. One potential approach to

achieving this goal is sensor-based human activity recogni-
tion (S-HAR) [2], [3].

On-body electronic devices are equipped with three-
dimensional inertial sensors that can monitor various types
of forces along three distinct axes. These sensors include
accelerometers, gyroscopes, and magnetometers. Some of
these devices may also incorporate sensors to track vital
signs of human beings, such as humidity and pulse rates
[4]. Traditional statistical techniques have been used in
human activity recognition (HAR) to recognize patterns
[5]. These techniques employ a sliding-window approach
to segment signal sequences, extract relevant features from
these segments, and then use a classifier to assign specific
action labels. However, in recent years, deep architectures
have proven effective in handling multichannel time-series
recognition of human actions, including sports and everyday
life scenarios [6]–[9]. Deep architectures integrate feature
extraction and classification in an end-to-end manner, which
sets them apart from conventional methods [10], [11]. These
architectural models are capable of learning non-linear and
temporal relationships that exist within complex and dynamic
human actions. They achieve this by directly learning from
raw inertial data. Furthermore, these models exhibit greater
discriminatory power compared to manually created classes
of human actions. They also demonstrate invariance to dis-
tortions and temporal variations [12].

This study presents a logistic approach to recognize human
behaviors using wearable sensors and leverages pre-existing
deep learning models. Specifically, a deep residual network
is proposed to improve the efficiency of recognition in
classifying logistical operations. To evaluate the effectiveness
of deep learning models in identifying efficiency, the LARa
dataset is utilized. This publicly available dataset allows for
comparisons and includes a variety of human interactions
in logistics, such as standing, walking, cart handling, and
synchronization. The assessment of outcomes and evaluation
of model efficacy are performed using metrics such as
accuracy, precision, recall, and F-measure.

The following sections of this piece are organized as
follows: Section II offers an overview of the latest research
relevant to the topic. Section III provides a comprehensive
account of the ResNeXt model that has been proposed. Sec-
tion IV presents the findings obtained from the experiment.
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Lastly, Section V concludes with a summary of the study’s
findings and identifies potential areas for future research that
may present significant challenges.

II. RELATED WORKS

A. Deep Learning Models in HAR research

Deep learning networks are derived from artificial neural
networks (ANNs). Unlike conventional ANNs, which have a
shallow architecture with limited hidden layers, deep neural
networks (DNNs) have a greater number of layers. This
increased layer depth in DNNs allows them to learn from
large datasets more effectively. In fact, DNNs are often
used as dense layers in various other deep learning models.
When it comes to convolutional neural networks (CNNs),
it is common to include multiple dense layers after the
convolutional layers [13], [14].

CNN is built upon three fundamental concepts: sparse con-
nections, parameter sharing, and equivariant representations
[15]. In CNNs, subsequent layers often include pooling and
fully connected layers that handle regression or classification
tasks. CNNs have shown proficiency in extracting features
from signals and have achieved promising results in tasks
such as image classification, voice recognition, and text
evaluation. When it comes to time series classification, par-
ticularly in HAR, the utilization of CNNs offers two notable
advantages over alternative models: local dependency and
scale invariance. Local dependency refers to the likelihood
of associated signals being close to each other in the context
of HAR. Scale invariance, on the other hand, refers to the
property of remaining consistent across different rates or
frequencies.

Recurrent Neural Networks (RNNs) are widely used in
speech recognition and natural language processing. This is
because RNNs can effectively capture the temporal correla-
tions between neurons, which is crucial for these tasks. It
is common to combine RNNs with long-short term memory
(LSTM) cells, where LSTM acts as the memory unit during
gradient descent. However, there have been limited studies
that utilize RNNs for HAR tasks [16]–[19]. These studies
primarily focus on optimizing learning efficiency and mini-
mizing resource utilization in HAR applications.

The hybrid model refers to a composite approach that
combines different deep models [20]–[22]. One prominent
hybrid model is the fusion of CNNs and LSTM models,
which has shown promising results [23], [24]. Several ap-
proaches have been proposed to integrate CNN and LSTM
architectures. In a referenced study [25], it was demon-
strated that using recurrent dense layers in conjunction with
convolutional neural networks is more effective than using
solely dense layers in the same network architecture. Similar
findings were also observed in another study [26]. CNNs
excel at capturing spatial relationships, while RNNs leverage
temporal relationships. By integrating CNNs and RNNs, the
capacity to identify diverse activities with distinct temporal
durations and signal distributions can be improved. This
integration holds potential for enhancing activity recognition
in various applications.

B. Logistic Activity Recognition

Several research studies have focused on using Inertial
Measurement Units (IMUs) to recognize manufacturing op-
erations in various industries, including timber businesses
[27], construction [28], assembly lines [29], and workflow
optimization [30]. For instance, a study conducted by Zeng
et al. [12] utilized deep learning techniques to recognize
activities in the industrial sector, using the Skoda dataset
[31]. The network architecture employed in the study con-
sisted of a single convolutional layer, a pooling layer, two
hidden layers, and a softmax layer for identification purposes.
The convolutional layer incorporated multiple convolutional
blocks that operated in parallel, with partial weight distri-
bution specifically designed for the tri-axial accelerometer
sensor data. The pooling layer pooled the outputs of these
convolutional blocks with distinguished weight distribution
before passing them on to subsequent layers.

In another study, Yang et al. [32] utilized the Logistics
Activity Recognition Challenge (LARa) dataset, which they
curated, to identify different operations within a logistics
context. They achieved this using a modified version of the
t-CNN model. The modified model comprised four convo-
lutional layers, two fully connected layers, and two distinct
softmax and sigmoid layers. These layers were employed
to identify the sub-activity being executed and extract rel-
evant characteristics from the set of action characteristics,
respectively. The input data for this process was derived from
recorded movement information contained within the dataset.

The literature review highlights the significant utility of
CNNs in identifying actions within manufacturing contexts.
Building upon this, the present study utilizes a CNN to
perform uninterrupted activity identification specifically for
logistics. Inertial sensor data from the LARa dataset is
utilized as the input for the CNN model.

III. SENSOR-BASED HAR FRAMEWORK

In this study, a sensor-based HAR framework is utilized.
The framework consists of four key stages: data acquisition,
data pre-processing, data generation, and model training and
evaluation. These stages are illustrated in Fig. 1.

A. LARa Dataset

The LARa dataset [33] provides freely accessible multi-
modal data from logistics situation recordings. This dataset
includes video camera footage, motion-capturing informa-
tion, and data from inertial measurement units (IMUs) col-
lected from a sample of 14 individuals. The study focuses
on routine duties commonly performed in logistics processes.
Each individual is tasked with completing three assignments,
consisting of two picking assignments and one packing
assignment. To gather movement data, an Optical Marker-
based Motion Capture (OMoCap) system was utilized, which
tracked the motions of individuals. In addition, several IMUs
were used to capture patterns of movement, and RGB videos
were recorded to document the actions performed. The
dataset encompasses a total duration of 758 minutes and
has been annotated in two distinct forms. The first form
of annotation includes annotations for each intra-activity,
covering both picking and packing assignments. The second
form of annotation involves binary semantic illustrations that
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II. RELATED WORKS 
 

A. Deep Learning Models in HAR research 
 
Deep learning networks were developed from artificial 

neural network (ANN). Traditional ANN often contains very 
few hidden layers (shallow) while DNN contains more layers 
(deep). With more layers, DNN is more capable of learning 
from large data. DNN usually serves as the dense layer of 
other deep models. For example, in a convolution neural 
network, several dense layers are often added after the 
convolution layers [add2.1].  

Convolutional neural network (CNN) leverages three 
important ideas: sparse interactions, parameter sharing, and 
equivariant representations. After convolution, there are 
usually pooling and fully-connected layers, which perform 
classification or regression tasks. CNN is competent to extract 
features from signals and it has achieved promising results in 
image classification, speech recognition, and text analysis. 
When applied to time series classification like the HAR, CNN 
has two advantages over other models: local dependency and 
scale invariance. Local dependency means the nearby signals 
in HAR are likely to be correlated, while scale invariance 
refers to the scale-invariant for different paces or frequencies.  

Recurrent neural network (RNN) is widely used in speech 
recognition and natural language processing by utilizing the 
tem- poral correlations between neurons. LSTM (long-short 
term memory) cells are often combined with RNN where 
LSTM is serving as the memory units through gradient 
descent. Few work used RNN for the HAR tasks [add2.2], 
where the learning speed and resource consumption are the 
main concerns for HAR.  

Hybrid model is the combination of some deep models. 
One emerging hybrid model is the combination of CNN and 
LSTM provided good examples for how to combine CNN and 
LSTM. It is shown in [add2.3] that the performance of ‘CNN 
+ recurrent dense layers’ is better than ‘CNN + dense layers’. 
Similar results are also shown in [add2.4]. The reason is that 
CNN is able to capture the spatial relationship, while RNN can 
make use of the temporal relationship. Combining CNN and 
RNN could enhance the ability to recognize different activities 
that have varied time span and signal distributions.  

 
B. Logistic Activity Recognition 

Industrial activity recognition using IMUs has been tar- 
geted by multiple research works for varying applications, 
these include, wood shops [add2.5], construction [add2.6], 
assembly line [add2.7], process optimization [add2.8]. An 
early work using deep learning methods for activity 
recognition for industry was suggested by [add2.9] on the 
Skoda dataset [add2.10]. Their network consists of one 
convolutional layer, one pooling layer, two hidden layers and 
one softmax layer for classification. Moreover, the 
convolutional layer contains several convolutional blocks in 

parallel with partial weight sharing for the tri-axial 
accelerometer sensor values. The pooling layer also pools 
convolutional blocks sharing their weights separately before 
the outputs are passed on to the later layers. The authors in 
[add2.11] use the Logistics Activity Recognition Challenge 
(LARa) dataset provided by them to determine activities in a 
logistics scenario. They carry this out by using a modified 
version of the t-CNN in [add2.12] which consists of four 
convolutional layers, two fully connected layers followed by 
two separate softmax and sigmoid layers to determine the sub-
activity being performed and the attribute from an activity 
attribute list on motion capture data from the dataset.  

It can be observed from the literature review that convo- 
lutional neural networks have proved to be very useful for 
performing activity recognition in industrial scenarios. This 
paper utilizes a convolutional neural network for performing 
continuous activity recognition for logistics using inertial sen- 
sor data from the LARa dataset.  

III. THE SENSOR-BASED HAR FRAMEWORK 

The sensor-based HAR framework, which is used in this 
work, composes of four main processes: data acquisition, data 
pre-processing, data generation, model training and 
evaluation as shown in Fig 1. 
 

 
Fig. 1 The HAR framework based on a wearable sensors used in this 

work 

A. LARa  Dataset 

The logistic activity recognition challenge (LARa) 
dataset [add3.1] is a publicly benchmark dataset that provides 
data of multiple modalities from recordings in a logistics 
scenario. Video recordings, Motion Capture data and data 
from inertial measurement units is recorded from 14 people 
in the dataset. Each of the participants is asked to perform 
three tasks which are common in logistics operations, two of 
these are picking tasks and the third is packing. Motion 
capture data was captured using a Optical Marker-based 
Motion Capture (OMoCap) system which resulted in markers 
for the movements of the participants, moreover, several 
IMUs were used to record the movement patterns too along 
with RGB videos of the activities being performed. The total 
duration of the recorded data is 758 minutes which has been 
annotated in two ways, first, an annotation is provided for 
each intra-activity that comprises the picking and pacing 
tasks and second, binary semantic representations of a 
different type of representation for the picking and packing 
tasks. In this work, we only used IMU sensor data from the 
LARa dataset to train and test the proposed model.  
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Fig. 1. The HAR framework based on a wearable sensors used in this work.

are specific to the picking and packing assignments. These
annotations provide additional context to the dataset.

For this study, the proposed model exclusively employs
IMU sensor data sourced from the LARa dataset for training
and testing purposes.

B. Data Pre-processing

The pre-processing of the raw sensor data involved two
main steps: noise removal and data normalization. Once the
data underwent pre-processing, it was divided into segments
using a sliding window approach. The length of each segment
was fixed at 200 samples, with an overlapping ratio of 50%.
This overlapping ratio ensured the generation of sufficient
samples to create a comprehensive dataset for training deep
learning networks.

Since the dataset contains annotations for each sensor
value on a per-sample basis, a segment that was extracted
obtained a segment annotation through majority voting of
its constituent samples’ annotations. These segment anno-
tations were used as appropriate labels for the segments.
After extracting segments from each experiment across all
participants, segments belonging to the none category were
discarded. The remaining segments were employed for cat-
egorization using the proposed model.

C. The ResNeXt model

In theory, increasing the number of layers in a deep
learning network should improve its effectiveness. However,
in practice, it has been observed that an excessive number of
layers can lead to challenges such as vanishing or exploding
gradients. These issues can negatively impact the network’s
ability to accurately recognize patterns.

To address this challenge, the ResNeXt architecture offers
a solution that enhances accuracy without increasing param-
eter complexity or reducing the number of hyperparameters.
This is achieved through the architecture of the sub-modules.
This study demonstrates that by employing parallel stacking
of blocks with identical topology, the model’s accuracy can
be improved without a significant increase in the parameter
count. This approach replaces the three-layer convolution
block of the original ResNet [34], while maintaining iden-
tical topology. As a result, the hyperparameters are corre-

spondingly reduced, making the model more transferable to
different tasks.

To enhance more effectiveness of the ResNeXt network
model and identify the most distinctive features, an attention
mechanism has been incorporated. This mechanism allows
for investigating the interdependencies among features. The
use of attention mechanisms is a widely adopted technique
in deep learning, finding applications in various domains
such as natural language processing, image recognition, and
speech recognition. By assigning higher weights to signifi-
cant features, the attention mechanism reduces the network’s
parameters while enhancing the discriminative power of these
features. This approach improves the model’s efficiency by
focusing on the most relevant information.

The ResNeXt architecture is a comprehensive deep-
learning model that incorporates convolutional blocks with
multi-kernel residual blocks following the deep residual
structure. Fig. 2 provides an illustration of the overall con-
ceptualization of the proposed model.

ResNeXt employs Convolutional Blocks (ConvB) to ex-
tract low-level features from raw sensor data. The ConvB
model consists of four layers, as shown in Fig. 2. The
techniques utilized in this study include Conv1D, BN, ELU,
and MP. Conv1D employs trainable convolutional kernels
to extract specific features, generating distinct feature maps.
The BN layer is chosen to expedite and enhance the train-
ing process. The ELU layer is incorporated to amplify
the model’s expressive power. The MP layer enables com-
pression of the feature map while preserving its essential
elements. The Multi-Kernel Blocks (MK) are composed of
three parts, utilizing convolutional kernels of varying sizes:
1 × 3, 1 × 5, and 1 × 7. To reduce system complexity
and parameter count, the suggested network employs 1 ×
1 convolutions in each component.

The detection block utilized the Global Average Pooling
(GAP) technique and flattened layers to convert the mean
of each feature map into a one-dimensional vector. The
output of the fully connected layer was subjected to Softmax
operation to obtain probabilistic inference. To calculate the
network’s losses, the cross-entropy loss operation, commonly
used in classification tasks, was applied.
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B. Data Pre-processing 
Raw sensor data were manipulated in data pre-processing 

as follows: noise removing and data normalization. Then the 
pre-processed sensor data were segmented using a fixed-
width sliding windows of 200 samples with an overlapping 
proportion of 50%. This overlap is used to ensure that enough 
samples are generated to develop a large enough dataset for 
training of deep learning networks. Furthermore, since the 
annotations in the dataset are present on a sample by sample 
basis for each value of each sensor, an extracted segment is 
assigned a segment annotation by majority voting of the 
annotations of its samples. We then use the segment 
annotations as the appropriate annotation labels. Once 
segments have been extracted from all the trials for all 
subjects, the segments belonging to the None class are 
removed. The rest of the segments are used for classification 
with the our proposed model.  

 
 
C. The ResNeXt model 

Theoretically, the more layers of a deep learning model 
network there are, the better the performance should be. In 
practice, as the number of network layers increases, the 
gradient disappears and the gradient explodes, resulting in 
poor recognition performance. However, due to the topology 
of the sub-modules, the ResNext structure can improve 
accuracy without increasing parameter complexity, while 
also reducing the number of hyper-parameters. As shown in 
Figure 2, with parallel stacking of blocks of the same 
topology, instead of the three-layer convolution block of the 
original ResNet, the accuracy of the model is improved 
without significantly increasing the parameter order. At the 
same time, due to the same topology, the hyper-parameters 
are also reduced, which is convenient for model porting.  

To further improve the performance of the ResNext 
network model and select the most discriminative features, an 
attention mechanism is introduced into the ResNext network 
model to explore the dependencies between features. The 
attention mechanism is a common data processing method in 
deep learning and is widely used in various deep learning 
tasks, such as natural language processing, image 
recognition, and speech recognition. Assembling features by 
assigning larger weights to some ‘significant’ features not 
only reduces the parameters of the network but also improves 
the discriminative power of the features.  

The proposed ResNeXt network is an end-to-end deep-
learning model built on convolutional blocks with multi-
kernel residual blocks of the deep residual structure. Fig. 2 
depicts the suggested model’s general design.  

 
 Fig. 3 The ResNeXt architecture used in this work 

In the ResNeXt, Convolutional Blocks (ConvB) are used 
to extract low-level characteristics from raw sensor data. 
ConvB consist of four layers, as shown in Fig. 3: 1D-
convolutional (Conv1D), batch normalization (BN), 
exponential linear unit (ELU), and max-pooling (MP). 
Multiple convolutional kernels that are trainable obtain 
particular features in the Conv1D, and each kernel generates 
a feature map. To accelerate and stabilize the training 
process, the BN layer was chosen. The ELU layer was applied 
to enhance the expressiveness of the model. The MP layer 
was utilized to condense the feature map while preserving its 
most vital components. The Multi-Kernel Blocks (MK) have 
three components with convolutional kernels of various sizes: 
1 × 3, 1 × 5, and 1 × 7. Each part employs 1 × 1 convolutions 
while employing these kernels to reduce the system 
complexity of the proposed network and the number of 
parameters.  

Utilizing the Global Average Pooling algorithm and 
flattened layers, the averages of each feature map were 
transformed into a 1D vector in the classification block 
(GAP). The outcome of the utterly connected layer was 
translated into probabilistic reasoning employing the 
Softmax function. To calculate the network’s losses, the 
cross-entropy loss function, frequently used in classification 
tasks, was utilized.  

D. Performance Messurement Criteria 
To evaluate the performance of the proposed deep learning 

model, four standard evaluation metrics, e.g. accuracy, 
precision, recall, and F-measure, are calculated in the process 
of 5-fold cross validation. The mathematical formula of these 
four metrics are expressed as follows: 

Accuracy =        (1) 

  
Precision  =    (2) 

Recall       =    (3) 

F-measure =  (4) 

 
These four evaluation metrics are most common 

performance of HAR. The recognition is defined as a true 
positive (TP) recognition for the considered class and a true 
negative (TN) recognition for all other classed. A sensor data 
belonging to one class may be misclassified as belonging to 
another, creating a false positive (FP) recognition of that class, 
while an activity sensor data belonging to another class may 
be misclassified as belonging to that class, creating a false 
negative (FP) recognition of that class.  
 

IV. EXPERIMENTS AND RESULTS 
In this section, we describe experiment setting and show 

experimental results used to evaluate the proposed CNN-
LSTM model for HAR using IMU sensor data from smart 
glasses.  

C
on

v1
D

+

shortcut connection

M
ax

Po
ol

in
g

EL
U

Ba
tc

h 
N

om
al

iz
at

io
n

C
on

v1
D

Multi-Kernel Blocks x 3

G
A

P

Fl
at

te
n

FC

O
ut

pu
t

Convolutional Block

GAP Global Average
Pooling Layer Flatten Flatten

Layer

FC Fully Connected Layer

C
on

v1
D

C
on

v1
D

C
on

v1
D

C
on

v1
D

C
on

v1
D

C
on

v1
D

+

C
on

v1
D

TP TN
TP TN FP FN

+
+ + +

TP
TP FP+
TP

TP FN+

2
Precision Recall
Precision Recall

´
´

+

Fig. 2. The ResNeXt architecture used in this work.

D. Performance Measurement Criteria

To evaluate the effectiveness of the proposed deep learn-
ing model, four widely recognized assessment indicators –
accuracy, precision, recall, and F-measure – were calculated
using a 5-fold cross-validation approach. The computations
for these indicators are provided below:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F −measure = 2× Precision×Recall

Precision+Recall
(4)

The four measurements mentioned above are frequently
utilized to assess the effectiveness of HAR. Identification
can be described as a true positive (TP ) detection for
the category under consideration and a true negative (TN )
detection for all other classes. The misclassification of sensor
data can result in false positive or false identification of
a category. Specifically, sensor data relating to a particular
category could be erroneously identified as relating to another
category, leading to false positive (FP ) detection. Conversely,
sensor data being connected to a particular category could be
mistakenly identified as relating to another category, resulting
in false negative (FN ) identification.

IV. EXPERIMENTS AND FINDINGS

This section outlines the conditions of the study. It presents
the empirical findings utilized to assess the efficacy of
the ResNeXt model for HAR employing IMU sensor data
obtained from the LARa dataset.

A. Experiments Setting

All experiments conducted in this investigation were exe-
cuted on the Google Colab Pro infrastructure services utiliz-
ing a Tesla V100. The present study employs Python, Ten-
sorFlow, Keras, Scikit-Learn, Numpy, and Pandas libraries
to carry out the studies.

B. Experimental Findings

In order to assess the efficacy of deep learning models that
rely on IMU sensors, we carried out a series of investigations
to evaluate the ability to recognize the capabilities of both
baseline CNN and LSTM models. The ResNeXt model under
consideration has undergone hyperparameter tuning through
the utilization of the Bayesian optimization technique. This
study conducted studies to assess the identification efficacy of
deep learning networks using a range of indicators, including
accuracy, precision, recall, and F-measure.

Table I presents the F-measure metric obtained from
multiple deep learning networks trained on the LARa dataset,
specifically for the identification of seven logistics opera-
tions.

TABLE I
F-MEASURE OF THE BASELINE DEEP LEARNING MODEL AND THE

PROPOSED RESNEXT MODEL IN THIS STUDY

Model F-measure (%)
CNN LSTM ResNeXt

Standing 30.3% 40.2% 41.2%
Walking 24.9% 70.4% 72.5%
Moving carts 57.0% 79.9% 79.9%
Handling upwards 20.7% 38.8% 57.2%
Handling centered 74.4% 83.8% 84.1%
Handling downwards 16.5% 71.0% 71.3%
Synchronization 66.7% 79.7% 85.3%

Based on the experimental findings, the ResNeXt model
proposed in this study achieved the highest F-measure. No-
tably, this network demonstrated effective recognition of the
“Hand centered” and “Synchronization” actions. However,
it showed lower performance in accurately identifying the
“Stand” activity, which was the least accurately classified
among the seven action categories examined.

V. CONCLUSION AND FUTURE WORKS

This study aims to explore the effectiveness of using
IMU sensors placed on different body parts for categorizing
logistical tasks. Two primary deep learning models, CNN and
LSTM, were implemented and evaluated. The performance
evaluation utilized the LARa dataset, a publicly available
benchmark dataset that encompasses a wide range of logistic
activities. Additionally, a deep residual neural network called
ResNeXt was introduced. The experimental results demon-
strate that the ResNeXt model outperforms other baseline
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deep learning models, as indicated by achieving the highest
F-measure for each logistic action.

Future research aims to further develop the ResNeXt archi-
tecture by leveraging transfer learning techniques and sensor
data from wearable devices for customized identification of
human activities.

ACKNOWLEDGMENT

This research project was supported by Thailand Science
Research and Innovation Fund; University of Phayao under
Grant No. FF66-UoE001; National Science, Research and
Innovation Fund (NSRF); and King Mongkut’s University
of Technology North Bangkok with Contract no. KMUTNB-
FF-67-B-09.

REFERENCES

[1] L. Sanhudo, D. Calvetti, J. P. Martins, N. M. Ramos, P. Mêda, M. C.
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and recurrent models for human activity recognition using wearables,”
in Proceedings of the Twenty-Fifth International Joint Conference on
Artificial Intelligence, ser. IJCAI’16. AAAI Press, 2016, pp. 1533–
1540.

[5] S. Saini, A. Juneja, and A. Shrivastava, “Human activity recognition
using deep learning: Past, present and future,” in 2023 1st International
Conference on Intelligent Computing and Research Trends (ICRT),
2023, pp. 1–6.

[6] S. Mekruksavanich and A. Jitpattanakul, “Sport-related activity recog-
nition from wearable sensors using bidirectional gru network,” Intel-
ligent Automation & Soft Computing, vol. 34, no. 3, pp. 1907–1925,
2022.

[7] V. Sharma, B. Sharma, and J. Panda, “Rgb-d dataset: The impact
of yoga and gym exercise for human activity recognition,” in 2023
International Conference on Device Intelligence, Computing and Com-
munication Technologies, (DICCT), 2023, pp. 1–4.

[8] N. Hnoohom, S. Mekruksavanich, and A. Jitpattanakul, “An efficient
resnetse architecture for smoking activity recognition from smart-
watch,” Intelligent Automation & Soft Computing, vol. 35, no. 1, pp.
1245–1259, 2023.

[9] M. Fasko, W. Zhao, S. Yang, T. Qiu, and X. Luo, “Towards human
activity recognition and objective performance assessment in human
patient simulation: A case study,” in 2020 IEEE International Confer-
ence on Systems, Man, and Cybernetics (SMC), 2020, pp. 2702–2707.

[10] F. J. Ordóñez and D. Roggen, “Deep convolutional and lstm recur-
rent neural networks for multimodal wearable activity recognition,”
Sensors, vol. 16, no. 1, 2016.

[11] S. Mekruksavanich and A. Jitpattanakul, “Hybrid convolution neural
network with channel attention mechanism for sensor-based human
activity recognition,” Scientific Reports, vol. 13, no. 1, p. 12067, 2023.

[12] M. Zeng, L. T. Nguyen, B. Yu, O. J. Mengshoel, J. Zhu, P. Wu,
and J. Zhang, “Convolutional neural networks for human activity
recognition using mobile sensors,” in 6th International Conference on
Mobile Computing, Applications and Services, 2014, pp. 197–205.

[13] S. Mekruksavanich and A. Jitpattanakul, “A multichannel cnn-lstm
network for daily activity recognition using smartwatch sensor data,”
in 2021 Joint International Conference on Digital Arts, Media and
Technology with ECTI Northern Section Conference on Electrical,
Electronics, Computer and Telecommunication Engineering, 2021, pp.
277–280.

[14] N. Hnoohom, A. Jitpattanakul, I. You, and S. Mekruksavanich, “Deep
learning approach for complex activity recognition using heteroge-
neous sensors from wearable device,” in 2021 Research, Invention, and
Innovation Congress: Innovation Electricals and Electronics (RI2C),
2021, pp. 60–65.

[15] K. O’Shea and R. Nash, “An introduction to convolutional neural
networks,” 2015.

[16] N. K. Singh and K. S. Suprabhath, “Har using bi-directional lstm
with rnn,” in 2021 International Conference on Emerging Techniques
in Computational Intelligence (ICETCI), 2021, pp. 153–158.

[17] S. Mekruksavanich and A. Jitpattanakul, “Rnn-based deep learning for
physical activity recognition using smartwatch sensors: A case study of
simple and complex activity recognition,” Mathematical Biosciences
and Engineering, vol. 19, no. 6, pp. 5671–5698, 2022.

[18] S. Park, J. Park, M. Al-masni, M. Al-antari, M. Uddin, and T.-S. Kim,
“A depth camera-based human activity recognition via deep learning
recurrent neural network for health and social care services,” Procedia
Computer Science, vol. 100, pp. 78–84, 2016.

[19] S. Mekruksavanich and A. Jitpattanakul, “Deep learning approaches
for continuous authentication based on activity patterns using mobile
sensing,” Sensors, vol. 21, no. 22, 2021.

[20] M. M. Hossain Shuvo, N. Ahmed, K. Nouduri, and K. Palaniappan,
“A hybrid approach for human activity recognition with support vector
machine and 1d convolutional neural network,” in 2020 IEEE Applied
Imagery Pattern Recognition Workshop (AIPR), 2020, pp. 1–5.

[21] S. Mekruksavanich and A. Jitpattanakul, “Smartwatch-based human
activity recognition using hybrid lstm network,” in 2020 IEEE SEN-
SORS, 2020, pp. 1–4.

[22] S. Deep and X. Zheng, “Hybrid model featuring cnn and lstm archi-
tecture for human activity recognition on smartphone sensor data,”
in 2019 20th International Conference on Parallel and Distributed
Computing, Applications and Technologies (PDCAT), 2019, pp. 259–
264.

[23] N. Hnoohom, A. Jitpattanakul, and S. Mekruksavanich, “Real-life
human activity recognition with tri-axial accelerometer data from
smartphone using hybrid long short-term memory networks,” in 2020
15th International Joint Symposium on Artificial Intelligence and
Natural Language Processing (iSAI-NLP), 2020, pp. 1–6.

[24] S. Perez-Gamboa, Q. Sun, and Y. Zhang, “Improved sensor based
human activity recognition via hybrid convolutional and recurrent
neural networks,” in 2021 IEEE International Symposium on Inertial
Sensors and Systems (INERTIAL), 2021, pp. 1–4.

[25] S. Mekruksavanich, C. Promsakon, and A. Jitpattanakul, “Location-
based daily human activity recognition using hybrid deep learning
network,” in 2021 18th International Joint Conference on Computer
Science and Software Engineering (JCSSE), 2021, pp. 1–5.

[26] S. Mekruksavanich and A. Jitpattanakul, “Sensor-based complex hu-
man activity recognition from smartwatch data using hybrid deep
learning network,” in 2021 36th International Technical Conference on
Circuits/Systems, Computers and Communications (ITC-CSCC), 2021,
pp. 1–4.

[27] J. Ward, P. Lukowicz, G. Troster, and T. Starner, “Activity recognition
of assembly tasks using body-worn microphones and accelerometers,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 28, no. 10, pp. 1553–1567, 2006.

[28] J. Zhao and E. Obonyo, “Towards a data-driven approach to injury
prevention in construction,” in Advanced Computing Strategies for
Engineering. Cham: Springer International Publishing, 2018, pp.
385–411.
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