
Camera Image Dehazing and Target Detection for Autonomous Vehicles

Keizo MIYAHARA1 Yucheng XU2 and Natsuki OHARA3

Abstract— This paper describes a simple target detection
system for autonomous vehicles to perform an emergency stop.
We especially focus on the system only with a digital camera as
the perception unit for the situation. The detecting performance
of the imaging sensors, including the digital cameras, often
suffer from “haze” due to atmospheric obscuration. In this
paper, we review the image “dehazing” algorithms aiming for
the in-vehicle usage, and we propose a system configuration for
the safety measure with applying a selected algorithm. A series
of experimental results depicted the feasibility of the system
configuration and its applicability to real-time processing.

I. INTRODUCTION

Governments of European countries, United states, Japan,
and other countries are leading development in “Automated
Driving Systems (ADS)” technologies [1]–[4]. Under these
assistance, varieties of ADS researches have been con-
ducted [5]. An emergency deceleration and stop strategy,
or “Minimum Risk Maneuver (MRM),” is one of the key
technologies for ADS safety. It minimizes the risk in case
that the driver does not respond to a taking-over request
from ADS [6]. Major sensors for ADS are shown in Table I.
Generally 20-30 of these sensors are implemented on ADS
and expected to function consistently [7], particularly for
level 4 and 5 operations [8].

TABLE I: Sensors utilized for “Automated Driving Systems
(ADS)” [7].

Sensor Characteristic Detection
target

Camera

Object recognition with
position / orientation

Low performance
at hazy scene

Car
Pedestrian

Sign
Marking

Light detection
and ranging

(Lidar)

Dark scene acceptable
Low performance

at hazy scene

Car
Pedestrian

Millimeter
wave radar

Hazy scene acceptable
Low performance with

near / small objects

Car
Pedestrian
Obstacles

Ultrasonic
range
sensor

Almost all weather
acceptable

Low performance with
far objects

Near
obstacles

This paper aims at operating the MRM with digital
cameras. These image sensors are often installed interior
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of vehicles, and therefore even in traffic accident cases, we
can expect that the cameras are operational being kept from
harmful damages comparing to other sensors attached to
vehicle exterior. The cameras, however, often face difficulties
in acquiring images with foggy, rainy and/or misty conditions
(hereinafter referred to as “haze”). Regardless the haze, the
object recognition system should be reliable to perform
the MRM strategy. To achieve this final goal, this paper
studies an object recognition system only with a camera
as the perception unit. Especially we propose a system
configuration that performs affirmatively in the hazy scenes.

The structure of this paper is as follows: Section II shows
former works on “dehaze” algorithms and another related
area. Section III describes the proposed recognition system
composed of image dehazing and target detection sub-
systems. A series of experimental results listed in Section IV
shows the feasibility of the system for real-time applications.
Note that a part of basic design of the proposed recognition
system was presented by the authors at a conference [9].
This paper summarizes the former contents, and describes
the newly performed experimental results, together with a
review/study of dehaze algorithms.

II. RELATED RESEARCH

Dehaze algorithms can be categorized into two groups:
image enhancement and image restoration. In short, the
algorithms in the former group focus on the image quality
itself. They adjust parameters of the image to reduce noises
and to enhance the edges. In contrast, the latter adopts certain
physical models to estimate the real images. Representing
algorithm from each group will be examined in the following
subsections to apply for the object recognition system.

A. Image enhancement

1) “Retinex” algorithm: One of the active research field
on dehazing with image enhancement is the “Retinex” algo-
rithm [10]. Retinex is a coined word combining “retina” and
“cortex.” It is modeled after the human visual function, and
has been proposed as an effective processing technique for
improving quality of the input image.

Several dehaze processes with the Retinex algorithm have
been studied, including FMC [11], SSR [12], MSR [13] and
MSRCR [14]. The processes SSR and MSR were examined
here with sample images. Figure 1 shows the results of the
experiment. With this image example, MSR (c) provides
better detection results than SSR (b).

It is also known that Retinex algorithm sometimes
encounter with noise reduction difficulties since it re-
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(a) Original image

(b) After SSR

(c) After MSR

Fig. 1: Experiments with Single-scale Retinex (SSR) and
Multi-scale Retinex (MSR).

quires computational resources and ample parameter adjust-
ment. [15].

2) Histogram equalization (HE): The “Histogram equal-
ization” is another widely applied method to image quality
improvement. It can be re-categorized into two sub-group ac-
cording to the size of divided region: GHE (Global histogram
equalization) and LHE (Local histogram equalization).

Although the GHE is effective for uniform noise over the
image, it frequently results in so-called “halo effect” [16].
The LHE has subtypes: POSHE [17], BPDFHE [18], and
CLAHE [19], those utilize different region dividing algo-
rithms. In particular, CLAHE is able to suppress the “block
effect” [18]. Figure 2 shows the results of the experiment
with CLAHE for the same original image in Figure 1. It
provides better detection results than the Retinex cases with

the sample image. The advantage of CLAHE is originated
from the intrinsic adoptability of the method to suppress
image noise.

(a) After CLAHE

Fig. 2: Experiments with Contrast-Limited Adaptive His-
togram Equalization (CLAHE).

B. Image restoration

1) Physical model for image restoration: The model
of “atmosphere scattering” or “air light scattering” was
proposed in [20]. According to this model, haze can be
formulated with following equation as depicted in Fig. 3:

I(x) = J(x)t(x) +A (1− t(x)) , (1)

where I , J , t, A and x are: an observed intensity (obtained
camera image), scene radiance (direct light from the object),
medium transmission (non-scattered light ratio), atmospheric
light (globally/uniformly over-laid air light) and pixel of an
input image, respectively.
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Fig. 3: The atmosphere scattering model.

We note that the camera image I(x) is under the influence
of haze. That is, the model describes I(x) as a linear sum of
the direct light J(x) (ideal image of the object without haze)
and the atmospheric light A. We see that every I(x), J(x),
and A holds intensity of RGB values. t(x) is a parameter,
called “transmission” that directly describes the influence of
haze condition. According to the equation, we understand
that our target image J(x) can be restored from the obtained
image I(x) with information of t(x) and A.

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 887



2) Dark channel prior (DCP): “Dark channel prior
(DCP)” [21] is an image restoration concept that is based
on the statistical study of massive number of hazy scenes in
order to compute t(x) and A. It was found in many cases that
the hazy scenes include a few pixels with which luminance
values were significantly low. This fact was named “Dark
channel prior.”

We applied DCP for the proposed system to make use
of its straightforward formulation and memory-friendliness
as shown in the next section. The mathematical stability
of DCP process was proved in [22]. According to the
experimental results of DCP presented in Section IV show
that the algorithm is able to provide affirmative dehazing
process in real-time.

III. PROPOSED SYSTEM

A. Image “dehaze” processing sub-system

We formulate the dehaze process with the DCP concept
in this subsection. The DCP over the input image (IDC(x))
can be defined as follows:

IDC(x) = min
y∈Ω(x)

(
min

C∈{R,G,B}
IC(y)

)
, (2)

where IDC(x) and Ω(x) are: a dark channel with respect to
a pixel x and a neighborhood area of x, respectively. Setting
a neighborhood area Ω of every x, pixel y sweeps over Ω.
Computing minimum intensity among any channel (R,G,B)
at every y, we pick out the minimum value among Ω, and
the picked value is set as IDC(x) at the pixel x. We note
that this value describes the influence of haze over the image
(small value = less influence).

Applying this computation on J(x), we obtain the follow-
ing equation:

JDC(x) = min
y∈Ω(x)

(
min

C∈{R,G,B}
JC(y)

)
≃ 0. (3)

Substituting this into eq. (1), we obtain the following equa-
tion:

IDC(x) ≃ A (1− t(x)) , (4)

and this directly results in the transmission t(x) as follows:

t(x) ≃ 1− IDC(x)

A
. (5)

As shown in Fig. 3, the atmospheric light A uniformly
laid over the image J(x). According to this physical model,
we consider that the following holds:

A0 ≃ max
C∈{R,G,B}

IC(x), (6)

where A0 is the estimate of A. Together with eq. (5), we can
obtain the dehazed target image J(x) as below:

J(x) ≃ I(x)−A0

t(x)
+A0. (7)

B. Target detection sub-system

Among the target detecting algorithm in public domain,
YOLO.v5 [23] was implemented for the proposed system.
YOLO is based on the deep learning framework “PyTorch,”
with a neural network “Darknet.” YOLO supports “Computer
Unified Device Architecture (CUDA)” framework, a parallel
computing environment, to perform multithreaded processing
using GPUs. Our paper aims at contributing to ADS research
field through a proposal of a system configuration that imple-
ments DCP dehaze processing into the CUDA environment
seamlessly with YOLO algorithm as shown in the following
subsection.

For the learning scheme, we applied YOLOv5s (Table II)
in terms of the balance of the recognition precision and the
learning speed. The learning curve of the applied dataset
with 20 leaning classes is shown in Fig. 4. Horizontal and
vertical axes show the learning iterations (times) and model
evaluation index (mean average precision: mAP), respec-
tively. From the figure we see that mAP increases uniformly
according to the learning times, and that the learning effect
saturates around 50 iterations.

TABLE II: Learning dataset for “YOLO” [24].

DataSet

mean
Average
Precision

mAP

Learning
speed

example
(Skylake)

Learning
speed

example
(NVIDIA V100)

YOLOv5n 45.7 45 6.3
YOLOv5s 56.8 98 6.4
YOLOv5m 64.1 224 8.2
YOLOv5l 67.3 430 10.1
YOLOv5x 68.9 766 12.1
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Fig. 4: Learning curve of the applied dataset.

C. System configuration

The configuration of the proposed object recognition sys-
tem is shown in Fig. 5. Input data can be both still images and
moving images (movies). The input image will be processed
in the CUDA environment shown in the middle box of the
figure. From the view point of hardware, the main part of the
process will be performed on GPU (Fig. 6). The image data
will be transmitted to GPU memory, and then distributed to
CUDA cores by the thread-scheduler (Warp) as CUDA tasks.
At this moment, the DCP dehaze process should possess
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priority to the YOLO target detection tasks in order for image
consistency. This programing is the key for the seamless
implementation of the DCP into the YOLO algorithm.

Fig. 5: Proposed system (software configuration).
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Fig. 6: “CUDA” concurrent process environment (device-
based configuration).

IV. EXPERIMENTS

A series of experiments were performed to verify the fea-
sibility and the real-time processing capacity of the proposed
system.

A. System parameter Ω

The system parameter Ω introduced in Section III was
examined for foundational setting. Applying a set of images
recorded in hazy condition on real roads, object recognition
accuracy was examined with respect to the size of Ω to
optimize its value. Some example images are shown in Fig. 8.
The experimental results showed similar trend among the
sample set. An example result of the experiments is shown
in Fig. 7. According to these results, the size of Ω was set
to 51× 51 for the proposed system.

Fig. 7: Ω adjustment with sample images (example result).

B. Basic feature

The basic feature of the system, the object recognition
performance with the dehaze process, was examined. The
DCP dehaze image processing sub-system and the target
detection sub-system with YOLO was implemented in a
laptop PC, after the learning process stated in Section III and
Ω setting mentioned above. The specification of the laptop
is shown in table III. The applied images for this experiment
are the same set for the Ω setting.

Fig. 8 shows four example cases of the experimental re-
sults. The bounding box with class identifier and recognition
accuracy is shown in the figure as the output of the system.
We see that a target object (car) was detected on every sample
image, and that the recognition accuracy is improved after
the DCP process ((b),(d),(f),(h)), comparing to the original
images ((a),(c),(e),(g)).

TABLE III: Specification of the applied PC for the experi-
ments.

CPU AMD Ryzen 7, 3.20GHz

GPU NVIDIA GeForce RTX 3070

Memory DDR3 SDRAM 16GB

C. Contrast evaluation

Throughout the basic feature experiment shown above,
the target recognition accuracy and image contrast were
collated.The results showed similar trend again among the
sample set. Figure 9 shows the collation of improvement
results among the four example images. We confirmed the
correlation between recognition accuracy and contrast values,
which can be considered as the dehazing effect.

D. Processing time

The processing time of the proposed system was examined
with digital camera input. Table IV shows the specification
of the applied USB camera.

Instead of camera traversing real haze road, recorded
movie in hazy environment was applied for the experiments
as an alternative. The movie was displayed on a monitor, and
the USB camera shoot the moving images to input them for
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(a) Sample image 1 (before
DCP)

(b) Sample image 1 (after
DCP)

(c) Sample image 2 (before
DCP)

(d) Sample image 2 (after
DCP)

(e) Sample image 3 (before
DCP)

(f) Sample image 3 (after
DCP)

(g) Sample image 4 (before
DCP)

(h) Sample image 4 (after
DCP)

Fig. 8: Proposed system output with sample images.

TABLE IV: Specification of the applied USB camera for the
experiments.

Pixel 400× 106

View angle 126 deg

Maximum frame rate 60 FPS

the object recognition system proposed. For comparison pur-
pose, two cases of DCP sub-system on/off were examined.

Fig. 10 shows an example result of the experiments.
The figure shows that the proposed system with DCP (b)
succeeded to detect the target object (pedestrian) in the hazy
scene, although the system without DCP (a) failed the target
detection. The frame rate of the proposed system (b) was
faster than 50 FPS. This processing speed of the whole
recognition system is considered fast enough for real-time
computation, with respect to the speed of the cameras in
common use for current ADS application [25].
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(b) Contrast

Fig. 9: Contrast and recognition accuracy with sample im-
ages.

USB camera 
to shoot 
the original movie

Original movie

Output of the system:
Object (pedestrian)
NOT detected

(a) DCP off

USB camera 
to shoot 
the original movie

Original movie

Output of the system:
Object (pedestrian)
DETECTED

(b) DCP on

Fig. 10: Experiments in quasi-real hazy condition.
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E. Effective factor in hardware

The processing time and chip occupancies were assessed
to confirm effective factors among the hardware with pro-
posed software configuration. Table V describes the com-
parison between two sets of proposed systems. The upper
and lower halves of the table show: the running results with
the PC shown in table III and with another PC, respectively.
In short, the CPU and GPU of the lower PC is about half
speed comparing to those of the upper one. For each PC
usage, CPU/GPU/Memory occupancy rate and frame rate
were measured during the system is running with applying
the identical USB camera shown in Table IV.

We see in the table that the on-board memory rates
indicated only small fluctuation whether the GPU was on
or off. This and the CPU/GPU occupancy rates confirm
that the main part of processing is affirmatively performed
in GPU, and that the specification of GPU directly affects
the processing speed. Besides, GPU remained much spare
capacity, and therefore software algorithm itself might have
room for improvement to make full use of GPU’s capability.

TABLE V: Processing time and chip occupancies (two laptop
PCs).

Processing
time per

frame [sec]

CPU
occupancy
rate [%]

GPU
occupancy
rate [%]

On-board
memory

occupancy
rate [%]

CPU Ryzen7
only 0.130 73.0 (N/A) 55.0

Ryzen7 with
RTX3070 0.018 17.0 4.0 57.0

CPU XeonE5
only 0.250 80.0 (N/A) 31.0

XeonE5 with
Quadro K620 0.031 23.0 8.0 33.0

V. SUMMARY AND DISCUSSION

This paper discussed camera image dehazing algorithm
and an object recognition system, aiming at the MRM
strategy for ADS vehicles.

After reviewing related papers including the “dehaze”
technology, a recognition system that works in hazy con-
ditions was proposed. It consists of image processing and
target detection sub-systems. A series of experiments were
performed with sample images and movies recorded in hazy
condition on real roads. The results of them validated affir-
matively the real-time processing ability (50 FPS and faster)
of the proposed system, which is fast enough for current in-
vehicle usage. They also suggested that the dehazing effect
was derived from the contrast enhancement. It was confirmed
as well that GPU performs main role in the proposed system
configuration, and that it still has spare capacity.

The future work of this research includes: to fine-tune
other dehaze strategies, CLAHE for example, examined in
Section IV for further comparison with the DCP, and to
improve software structure to make full use of the GPU’s
capability.
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