
FPGA Implementation of Rate Matching in 5G NR PDSCH

Rochak Jain‡, Naveed Anjum‡, Samudrala Soujanya†, Harsha Rudramuniyappa†,
Aviral Jain ‡, Ashutosh Bisht‡, Ekant Sharma‡ and Prem Singh†

† Department of ECE, IIIT Bangalore, India
‡ Department of ECE, IIT Roorkee, India

Abstract— 5G new radio (NR) distinguishes itself by offering
remarkable features such as significantly higher throughput and
lower latency compared to 4G. In 5G, low density parity check
(LDPC) encoding is employed as the channel coding scheme
for the transmission of data bits. Subsequent to the LDPC
encoding stage, bit selection and bit interleaving operations are
performed. Rate matching plays an important role in selecting
specific encoded bits for transmission, utilizing techniques
like shortening and repetition to support hybrid automatic
repeat request functionality. To address the issue of latency
encountered in processing large transport blocks, we propose
parallel algorithms for the rate matching. These algorithms are
implemented on field programmable gate arrays, and then the
performance of the optimized algorithms is compared with the
existing algorithms specified in the 3rd generation partnership
project standards.

I. INTRODUCTION

The fifth generation cellular communication, also known
as 5G new radio (NR), has brought significant advancements
in wireless communication. One crucial aspect of 5G NR is
the efficient transmission of data, which is achieved through
various functionalities such as low density parity check
(LDPC) encoding and rate matching, in the physical data
channel. LDPC encoding is an error control coding technique
used in 5G NR to provide reliable communication. Rate
matching, on the other hand, is a key algorithm in 5G NR
that ensures the compatibility of data rates between a source
and the channel. It adjusts the size of the transmitted data to
match the channel capacity and then rearranges the order of
data bits before transmission to improve the error resilience
of the transmitted data by spreading out consecutive bits,
mitigating the impact of burst errors. Field programmable
gate arrays (FPGA) implementation plays a vital role in
optimizing the performance of these techniques and allows
for the efficient execution of the aforementioned algorithms.

A previous study [1] has extensively analyzed rate match-
ing algorithm based on circular buffers for long term evo-
lution (LTE) systems. In addition, prior research [2] has
investigated circular buffer rate matching and bit selection
algorithms specifically tailored for 5G LDPC codes. The
work [3] proposes an efficient rate matching implementation
specifically designed for LTE systems. Furthermore, a sepa-
rate study [4] analyzes the decoding latency of LDPC codes
for 5G NR. In this paper, we propose a low latency algo-
rithm for bit selection and bit interleaving in rate matching
along with its FPGA implementation, and its performance is
compared with the rate matching algorithm given in the 3rd
generation partnership project (3GPP) standards.

In section II, we present an overview of the bit selection
and bit interleaving procedures. In Section III, we present

Fig. 1: Downlink data processing chain.

a detailed description of the proposed algorithm for rate
matching, highlighting the key aspects of the algorithm and
comparing it with the rate matching algorithm outlined in
3GPP standards. In section IV, we present the implementation
of the aforementioned algorithm on an FPGA, evaluating its
performance in terms of resource utilization and latency.

II. RATE MATCHING IN 5G NR
Rate matching is a technique used to align the bit count

in each encoded segment with the available transmission
resources. 5G NR follows limited buffer rate matching
(LBRM), where the input bits are written into a circular
buffer, and subsequently selected based on the redundancy
version (RV) index [5] set by the scheduler. The rationale
behind rate matching is explained as follows: the decoding
latency of LDPC codes [6] at the receiver is influenced
by the code rate employed during transmission, whereby
a higher code rate leads to reduced decoding latency, and
conversely, a lower code rate increases decoding latency.
LBRM helps achieve a flexible code rate by limiting the
minimum code rate, thereby reducing decoding latency. The
input, comprising systematic bits, filler bits, and parity bits,
is fed into rate matching from the preceding channel encoder,
which utilizes LDPC encoding for data transmission in 5G
as shown in Fig. 1. In order to understand rate matching, it
is essential to familiarize with the basic principles of LDPC
encoder.

In 5G NR, LDPC is used as a channel encoding scheme [7]
where two base graphs, namely BG1 with dimensions 46×68
and a mother code rate of 1

3 , and BG2 with dimensions
42×52 and a mother code rate of 1

5 , have been defined. These
base graphs are designed to accommodate varying code block
sizes, with the maximum code block size being 8448 bits
for BG1 and 3840 bits for BG2. The general structure of
a base graph is illustrated in Fig. 2, where the submatrix A
represents the systematic bits, and the submatrices B and
D correspond to the parity bits. To accommodate a broad
spectrum of payload sizes, a set of 51 lifting sizes (Zc) has
been defined in Table 5.3.2-1 of TS 38.212 [5], and every
element with value 1 in the base graph is substituted with
a Zc × Zc identity matrix, circularly shifted based on the
corresponding shift coefficient. Similarly, each element with

TENCON 2023 - 2023 IEEE Region 10 Conference (TENCON)
31 Oct - 3 Nov 2023. Chiang Mai, Thailand

ThuMoV.2

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 540

Fig. 2: LDPC base graph structure.

value 0 in the base graph is replaced with a Zc×Zc all-zero
matrix. The number of bits per code block at the input of the
LDPC encoder, denoted as K, is determined by the choice
of the base graph and the lifting size Zc. If base graph 1 is
opted for, then K is calculated as 22 ∗Zc, and if base graph
2 is chosen, then K is determined as 10 ∗Zc. During LDPC
encoding, the information bits corresponding to the first two
columns of the base graph are disregarded. Therefore, the
number of bits per code block at the output of the LDPC
encoder is given by N = 66 ∗ Zc for base graph 1, and
N = 50 ∗ Zc for base graph 2. If the size of the segmented
code block after CRC addition is less than K, filler bits are
added to make the size to the code block equal to K, prior
to the encoding process.

Bit selection encompasses the elimination of filler bits
introduced prior to LDPC encoding, followed by the selection
of bits, wherein a specific segment of bits is chosen based on
the RV index. Subsequently, the selected bits are rearranged
using a bit interleaver.

A. Bit selection in rate matching

In the bit selection process, the number of bits in the code
blocks is aligned with the number of available resources.
Each encoded block is written into a circular buffer, and
subsequently, an appropriate number of bits are read, starting
from a specific bit location indicated by the RV index,
disregarding any filler bits. In cases where the number
of available resources exceeds the length of the encoded
block, the encoded block is repeated to fill the available
resources. Conversely, if the number of available resources
is insufficient, the coded block is truncated to match the
available resources. Bit selection in 5G NR involves the

Fig. 3: Bit selection for redundancy version 0.

following steps as depicted in Fig. 3.
• The filler bits are removed, and then the appropriate bits

are selected based on RV index. Each encoded block is

denoted as d0, d1, . . . , dNr−1, where Nr represents the
length of the r-th encoded block which contains the
systematic bits, the filler bits, and the parity bits. These
input bits are written into a circular buffer of length Ncb

where Ncb = min(Nr, Nref), Nref = ⌊ TBS
C×RLBRM

⌋.
Here TBS denotes the transport block size which is
determined using clause 6.1.4.2 of TS 38.214 [8] and
represents the length of the original data block before
cyclic redundancy check (CRC) addition, segmentation
and encoding. RLBRM = 2

3 as defined in [8], and C is
the number of code blocks or segments. If Nr > Ncb,
the trailing bits dNcb

, dNcb+1, . . . , dNr
are discarded,

and the remaining bits are written into the circular
buffer.

• The bits e0, e1, . . . , eEr−1 are read from the circular
buffer, disregarding the filler bits. The starting bit loca-
tion k0 depends on the base graph selected for LDPC
and the RV index as per Table 5.4.2.1-2 in TS 38.212
[5]. The number of bits read for the rth encoded block
is calculated using Er = NLQm⌊ G

NLQmC ⌋ if r ≤ C −
mod(G

NLQm
, C)−1, otherwise Er = NLQm⌈ G

NLQmC ⌉,
where NL is the scheduled number of transmission
layers, Qm is the modulation order, G is the total
number of coded bits available for transmission, C is the
number of scheduled code block segments. The selected
bits are input to the bit interleaver for further processing.

B. Bit interleaving in rate matching

In scenarios where a set of adjacent bits are subject to deep
fade conditions, the receiver cannot effectively recover these
symbols. Therefore, it is preferable to have errors dispersed
randomly rather than concentrated in neighboring bits. To
address this, the bits are interleaved before allocating them
to REs. In the bit interleaver, the previously selected input
bits are permuted by writing them into a table row-wise, and
then reading them column-wise, effectively altering the order
of the bits.

Fig. 4: Bit interleaving procedure.

Each encoded block after bit selection denoted as
e0, e1, . . . , eE−1, serves as the input to the bit interleaver.
These bits are sequentially written into a table row-wise,
and subsequently read column-wise, as shown in Fig. 4. The
number of rows in the table is equal to the modulation order
Qm, and the number of columns is E

Qm
, where E is the

number of bits at the input of the bit interleaver.

III. PROPOSED ALGORITHM FOR RATE MATCHING

The proposed implementation of bit selection and bit
interleaving in rate matching in high-level synthesis, vivado
HLS, offers the advantages of low latency and low resource

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 541

utilization. Vivado HLS allows designers to describe IP func-
tionality using high-level languages like C, C++, or SystemC.
This higher level of abstraction simplifies verification and
accelerates development compared to traditional RTL design.
The HLS tool generates synthesizable RTL code based on the
high-level language description, making it compatible with
different FPGA devices. Vivado HLS also provides various
optimization methods to enhance the functionality and space
efficiency of the synthesized IP cores. These optimizations
improve speed and reduce resource usage without explicit
RTL coding.

A. Efficient Low-Latency Algorithm for Rate Matching

The rate matching algorithm for LDPC code, as outlined
in the 3GPP standards, is illustrated in Fig. 5. After receiv-
ing the output from the LDPC encoder, the data contains
extraneous filler bits that must be eliminated before applying
the bit selection and bit interleaving operations. Therefore,
our proposed approach divides the rate matching algorithm
into two components: filler bit removal and interleaver.
These algorithms are implemented as intellectual property
(IP) modules in Vivado HLS, which is part of the centric
design flow. The rationale behind generating two distinct IP
blocks on FPGA from the rate matching algorithm specified
in the 3GPP standards is to minimize latency during the
rate matching process and enable parallel data processing to
expedite the output generation. The filler bit removal IP plays
a vital role in the LDPC block’s data processing pipeline by
identifying and removing the filler bits in the output, ensuring
data integrity. The modified data, along with control signals
tkeep and tlast, is then transmitted to the interleaver IP for
further processing. The interleaver block then receives the
refined bit stream, to perform further bit selection and bit
interleaving operations on the data.

Before delving into the optimized algorithm employed for
rate matching, it is crucial to understand the rate matching
algorithm specified in the 3GPP standards and how it is
optimized, modified, and implemented to construct an IP on
an FPGA. To elucidate the functionality of the filler bit re-
moval IP on the FPGA, we refer to Algorithm 1. The process
starts with receiving encoded data from the LDPC encoder.
The essential configuration parameters for the algorithm are
retrieved from the configuration data bus to ensure smooth
execution. These parameters aid in calculating burst locations
and essential parameters, as specified in Table I, facilitating
accurate identification of filler bit positions in the encoded
data. The encoded output consists of systematic bits, filler
bits, and parity bits arranged sequentially as shown in Fig. 5.

Each 128-bit burst is processed individually once the start
and end positions of the filler bits are detected. Unwanted
filler bits are removed from the intermediate bursts while
preserving the paramount data present in the first and last
filler bit bursts (since the whole burst that contains the first
and last filler bit location’s information can’t be removed
directly). The systematic bits are then concatenated with the
parity bits to create the final output, for the interleaver IP, to
process. The output of the filler bit removal IP comprises the
data for bit selection and bit interleaving, along with the tkeep
and tlast signals. These signals provide essential information

Algorithm 1: Algorithm: filler bit removal
Input : cnData[128], inData[128]
Output: outData[128], tkeep[7], tlast[1]

1 Extract parameters TBS, C, K , Bg no, Z c from
cnData;

2 Calculate N , K, Ncb, Nref ;
3 Calculate a1, a2, t1, t2, a, b, idx (refer Table I);
4 for k ← 1 to C do
5 for i← 1 to a do

// outData stream writes: out,
// inData stream reads: in
// reading before filler bits

6 if i < a1 then
7 out: in(127, 0) tkeep = 127;
8 else if i < a1 and i = a then
9 out: in(127, idx), tkeep = 127− idx;

10 else if i = a1 = a2 and t2 > 0 then
11 out: in((127, t1), (t2 − 1, 0)),

tkeep = 127− t1 + t2;
12 else if i = a1 then
13 out: in(127, idx), tkeep = 127− idx;

// flush the bursts between a1
and a2

// reading after filler bits
14 else if i = a2 then
15 if a = a2 then
16 out: in(t2 − 1, idx),

tkeep = t2 − idx− 1;
17 else
18 out: in(t2 − 1, 0), tkeep = t2 − 1;
19 else
20 if i = a then
21 out: in(127, idx), tkeep = 127− idx;
22 else
23 out: in(127, 0) tkeep = 127;
24 end
25 Flush out the remaining bursts from a+ 1 to b.
26 end

to the interleaver IP. Specifically, tkeep indicates which bits
within a given burst should be included for processing, while
tlast determines the last accepted input burst. After the output
is received from the filler bit removal IP, it is then sent
to the interleaver IP, for further processing. The subsequent
steps of the rate matching process can now be subdivided
into distinct processes. Initially, interleaver IP performs bit
selection. This step involves the selection of specific bits
from the remaining data. Then, depending upon the length
of the rate matched block (E), and the LDPC encoder
output (N) for each segmented code block, we perform a
shortening or repetition process over data received in the
form of a circular buffer (Ncb) for the encoded output. After
which, depending on the redundancy version for the circular
buffer being retrieved from the configuration, we perform
the left circular shift on the entire transport block. Finally,
the bit interleaving is performed based on the modulation
index, ensuring an optimized arrangement of the bits tailored
to the specific modulation scheme. Collectively, these sub-
processes contribute to the effective rate matching of the

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 542

Fig. 5: Rate matching algorithm as per 3GPP standards.

Variable Definition
a1, a2 Burst location having first and last filler bit.
t1 Bit location before first filler bit in a1
t2 Bit location of the last filler bit in a2
a Number of Bursts in circular buffer (Ncb/128)
b Total number of bursts (N/128)

idx Bit location of Ncb in b

TABLE I: Parameters for filler bit removal algorithm

encoded bits within the system.
To improve its performance and reduce latency in FPGA

implementation, significant enhancements have been made to
the interleaver IP. These enhancements encompass modifica-
tions to the algorithm itself and the utilization of available
features in vivado HLS. After processing and storing the data,
a comprehensive modification was made to the algorithm by
introducing a reverse-mapping formula. This formula enabled
the reversed execution of the steps of shortening/repetition,
left circular shift, and bit interleaving. By utilizing copied ar-
rays, the operation facilitated parallel access in the pipelined
architecture, reducing latency. The application of parallelism
pragmas in vivado HLS played a crucial role in improving
performance. These pragmas allowed for the synthesis of
RTL code with a pipelined architecture and overlapping,
further reducing latency over iteration intervals. By making
multiple independent accesses to different arrays with copied
contents within a single iteration, latency in the loop was
minimized. The pipelined architecture enabled the overlap-
ping of the four distinct stages of the loop, leading to a
reduction in overall latency.

In our FPGA implementation, we conducted processing on
up to 152 code blocks for maximum transport block size and
4 transmission layers. To illustrate, we consider an example
where the aggregate number of bits slated for transmission
(G) equals 45360 bits, and the total count of segmented
code blocks (C) is 4. Consequently, the length of each rate
matched code block (E) = 11340.

To achieve 4-fold iteration parallelism in the
interleave loop for interleaving after the filler bit removal,
the trip count of the loop was set to 11340

4 , in order to
perform 2835 iterations on all the bits to be transmitted,
taking 4 at a time. The interleave loop had an iteration
latency of 72 clock cycles, while the initiation latency was
only 1 clock cycle due to optimizations that eliminated
sequential bottlenecks. Therefore, the total latency to process

Algorithm 2: Optimized algorithm: rate matching of
LDPC output
Input : inData[128], cnData[128], tkeep[7], tlast[1]
Output: outData[96]

1 Extract parameters Rv, TBS, C ′, K , Bg no, Z c,
Q, V , G, Cr from cnData;

2 Calculate N , K, Ncb, Nref ;
3 Set Qm = 2× (Q+ 1), F = K −K ;
4 Set Er = (V + 1)Qm⌊ G

(V+1)QmC′ ⌋;
5 Calculate index for left circular shift (k0) from RV ,

Ncb, N , Z c, Bg No, then adjust it;
6 Initialize arr1[200], arr2[200], arr3[200], arr4[200];
7 codeblock loop: for k ← 0 to C do
8 read loop: repeat
9 Extract data, tkeep, and tlast from inData;

10 Extract the req. bits from inData using tkeep;
11 Concatenate those bits to the array elements;

// For Instance: Burst b1, b2:
tkeep: 110, 128, is stored
like arr[0] : b1(0, 109), b2(0, 17),
128 bits arr[1] : b2(18, 127) 110
bits

12 Make copies of the original array;
13 Add tkeep to the keep total kptl variable;
14 until tlast is not triggered;
15 define function rev map(idx, arr);
16 | Return

arr[⌊ (⌊idx/Qm⌋+(idx%Qm)×⌊E/Qm⌋+k0)%kp tl
128 ⌋][128−

((⌊idx/Qm⌋+ (idx%Qm)× ⌊E/Qm⌋+
k0)%kp tl)%128];

17 interleave loop: for idx← 0 to E − 1 by 4 do
18 if k = 96 then
19 Write temp on outData, set k = 0;
20 temp[95− k] = rev map(idx, arr1);
21 temp[95− k − 1] = rev map(idx+ 1, arr2);
22 temp[95− k − 2] = rev map(idx+ 2, arr3);
23 temp[95− k − 3] = rev map(idx+ 3, arr4);
24 k+ = 4;
25 end
26 Handle the last code block if necessary;
27 Store the final output data and write it to

outData;
28 end

11,340 bits was reduced to 2835 (overlapped iterations)
+72 (initial iteration) −1 (initiation latency), resulting
in 2906 clock cycles, which originally was supposed to
be 2835 × 72 = 204120 clock cycles. This improvement
signifies a performance boost of 70 times. This holistic
approach significantly improved the efficiency of the
algorithm and reduced latency. Independent pipelining was
subsequently applied to the remaining steps of the algorithm
to optimize performance further.

IV. IMPLEMENTATION ON FPGA

A. FPGA Architecture

The overall architecture of the proposed algorithm is
shown in Fig. 6. Within the filler bit removal IP, data from the

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 543

LDPC encoder is read at a rate of 128 bits per burst. To facil-
itate the processing of each burst during filler bit removal, a
retentive/processing memory with a word width of 128 bits
is designed. The major RTL component utilized in the IP
core’s design is the lookup tables (LUTs) for expression logic
within the algorithm. The usage of LUTs can be observed in
the expression: output.data = temp.range(t2 − 1, index);
which requires logical right shift operators for synthesis
in the RTL. Furthermore, LUTs are utilized in the range
read operations within the if-else ladders. Another significant

Fig. 6: Overall architecture for the proposed parallel algorithm.

LUT expense is incurred by the multiplexer and the reading
of buffer memory through the read buffer function instance
in the original algorithm. Additionally, flip-flops (FFs) are
employed to store the parameters retrieved from the config
data and utilized in the algorithm. Pipelining is employed in
the FPGA implementation within the for-loops.

When applying pipelining to loop iterations using vivado
HLS, the loop is divided into multiple stages, allowing
concurrent processing of iterations. Vivado HLS identifies
these stages during synthesis, resulting in a hardware im-
plementation with multiple pipeline stages. Similarly, in the
implementation of the interleaver IP on the FPGA, the
interleave loop is divided into different pipeline stages,
enabling parallel and overlapping execution of iterations.

Resource Utilization Available Utilization %
LUT 30921 425280 7.12
FF 32085 850560 3.77

BRAM 18K 16 2160 0.74
DSP48E 18 4272 0.42
URAM 0 80 0

TABLE II: Resource utilization of interleaver IP.

The interleaver IP heavily relies on LUTs and FFs as the
major RTL components. These components are essential due
to the intricate calculations performed during the instantiation
of the reverse mapper function, as mentioned in Algorithm 2,
which is a critical aspect of the rate matching process. Our
optimized approach implements 4-way parallelism, signifi-
cantly reducing latency while increasing resource utilization.
Experimenting with 8-way parallel optimization further re-
duced latency but led to a substantial increase in resource
utilization, with FFs reaching 7% and LUTs reaching 14%.

Resource Utilization Available Utilization %
LUT 7945 425280 1.86
FF 1092 850560 0.13

BRAM 18K 0 2160 0
DSP48E 0 4272 0
URAM 0 80 0

TABLE III: Resource utilization for filler bit removal IP

IP (with specifications) Latency (min - max)
Filler bit removal 0.66us - 0.37ms

Interleaver (original) 1.91us - 30.0ms
Interleaver (optimized) 2.58us - 0.97ms

TABLE IV: Latency report of filler bit removal IP and interleaver IP
operating at a clock frequency of 100 MHz

B. Hardware Implementation and Simulation

Fig. 7 shows the hardware implementation of the rate
matching. The proposed algorithm is implemented in RTL
using verilog on the xilinx zynq ultraScale ZCU111
(xczu28dr-ffvg1517-2-e) evaluation board. To evaluate the
algorithm’s performance, an end-to-end simulation is con-
ducted for all possible configurations. Data generators are
used to provide input and configuration data directly to the
filler bit removal IP, which is connected to the interleaver IP.
The generated output is compared with the output generated
by the 5G NR toolbox in MATLAB for correctness. One
specific configuration is considered for evaluation, with a
transport block size of 848 bits and a target rate matched
output length of 7168 bits. The redundancy version is set to
0, the number of code blocks is 1, the modulation index is
2, lifting size Zc is 88, and the base graph 2 is used. The
clock frequency is set to 100MHz with an uncertainty of
12.5%. Using this configuration, the output is generated on
the evaluation board and verified. The total latency for this
configuration is measured to be 23.0421 microseconds. The
simulated results can be observed in Fig. 8.

C. Resource Utilization and Latency

Table II presents the resource utilization report for the
interleaver IP. The moderate utilization of LUTs and FFs
can be observed, although there is room for improvement.
The relatively high utilization is primarily attributed to the
parallel computing approach employed in the reverse mapper
loop within the IP. Table III presents the resource utilization
of the filler bit removal IP, which is comparatively low since
the primary objective of this IP is to remove filler bits. Both
IPs were evaluated on the xilinx zynq ultraScale ZCU111
evaluation board operating at a clock frequency of 100MHz.

Table IV presents the latency report for the filler bit re-
moval IP and provides a comparison between the original and
optimized versions of the interleaver IP. The latency has been
significantly improved, reducing from 30 milliseconds to 900
microseconds for processing the maximum transport block
size which is 12,77,992 bits, achieving a latency optimization
of approximately 1

33 . However, this optimization comes at the
cost of increased FPGA resource utilization. Therefore, it is
crucial to find an optimal trade-off for the selection of M in
M-paralleled pipelining to achieve the desired optimization

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 544

Fig. 7: Hardware implementation of the rate matching

Fig. 8: Waveform of the simulated result.

(in our the optimal latency and resource utilization were
found for M = 4).

V. CONCLUSION

In this paper, we presented FPGA implementations of
bit selection and bit interleaving in rate matching for 5G
NR, aiming to optimize latency and resource utilization.
Our optimizations resulted in significant latency improve-
ments, with the interleaver IP achieving a 1

33 times latency
reduction. We explored 4-way and 8-way parallelism to
balance resource usage and latency, with the former offering
a four-fold increase in resource utilization. The resource
utilization of the filler bit removal IP remained low due
to its specific function. Our findings contribute to efficient
5G NR implementations, enhancing data processing and
transmission. Future work should focus on further resource
optimization and exploring additional parallelism techniques
to meet evolving communication standards.

REFERENCES
[1] J. T. Cheng, A. Nimbalker, Y. W. Blankenship, B. K. Classon, and

K. T. Blankenship, “Analysis of circular buffer rate matching for LTE

turbo code,” in Proceedings of the 68th IEEE Vehicular Technology
Conference, VTC Fall 2008, 21-24 September 2008, Calgary, Alberta,
Canada. IEEE, 2008, pp. 1–5.

[2] F. Hamidi-Sepehr, A. Nimbalker, and G. Ermolaev, “Analysis of 5g
LDPC codes rate-matching design,” in 87th IEEE Vehicular Technology
Conference, VTC Spring 2018, Porto, Portugal, June 3-6, 2018. IEEE,
2018, pp. 1–5.

[3] C. Ma and P. Lin, “Efficient implementation of rate matching for lte
turbo codes,” in 2010 2nd International Conference on Future Computer
and Communication, vol. 1, 2010, pp. V1–704–V1–708.

[4] H. Wu and H. Wang, “Decoding latency of LDPC codes in 5g NR,”
in 29th International Telecommunication Networks and Applications
Conference, ITNAC 2019, Auckland, New Zealand, November 27-29,
2019. IEEE, 2019, pp. 1–5.

[5] 3GPP, “5G;NR;Multiplexing and channel coding,” 3rd Generation Part-
nership Project (3GPP), Technical Specification (TS) 38.212, 7 2018,
version 15.2.0.

[6] H. Wu and H. Wang, “Decoding latency of ldpc codes in 5g nr,” in
2019 29th International Telecommunication Networks and Applications
Conference (ITNAC), 2019, pp. 1–5.

[7] T. Richardson and S. Kudekar, “Design of low-density parity check
codes for 5g new radio,” IEEE Communications Magazine, vol. 56,
no. 3, pp. 28–34, 2018.

[8] 3GPP, “5G;NR;Physical layer procedures for data,” 3rd Generation
Partnership Project (3GPP), Technical Specification (TS) 38.214, 10
2018, version 15.3.0.

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 545

