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Abstract—Quantum machine learning is one of the most
exciting new avenues in the world of artificial intelligence,
especially because of the enormous computational power of
quantum computers and the promise of the development of
near error-free quantum computers in the not-so-distant future.
For quantum algorithms to be used in real-life applications,
quantum computers must be able to work with classical data.
One of the key steps in quantum algorithms dealing with
classical data is the encoding of classical data points to quantum
states, which can then be processed by quantum gates. It is
known that the type of encoding technique that works best
for a particular network is dependent on the dataset being
used. In this paper, a new parallel structure is proposed
utilizing two encoding techniques, namely amplitude encoding
and angle encoding, for effective classical data classification
via quantum neural network. The paper further proposes a
maximally expressible and entangled ansatz used to design a
simple Quantum Convolutional Neural Network (QCNN) with
only 32 parameters, that is used in the latter stages of the
network and is kept the same across all encoding instances
so that a comparison between the different encoding methods
is possible. Extensive experimentation is carried out on two
publicly available image datasets, namely MNIST and Fashion
MNIST. The results show that the proposed method achieves
better results than any of the encoding techniques deployed
alone for binary classification.

Index Terms—Amplitude, Angle, Encoding, Quantum, Qubit

I. INTRODUCTION

This decade has seen enormous growth in the field of
Machine Learning, and it is being realized that its application
potential in various fields is infinite. As the computational
power of modern computers increases, more complex and
deeper networks with an enormous number of parameters
can be trained to capture the most nuanced information from
the data. Image classification is one of the most fundamental
problems of computer vision and has enjoyed an exponential
increase in its abilities using Convolutional Neural Networks
(CNNSs). However, with the increase in depth and the number
of trainable weights, new problems have been introduced
in modern networks. Such impairments include the barren
plateau problem, where the training process is trapped in a
local minimum of the cost function and therefore the network
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stops the optimization of the weights despite a substantial
learning rate. In the post-modern world, where there is
access to an enormous amount of data, the development of
algorithms that can truly reap the benefits of the volume to
learn more nuanced information is deemed imperative.

The field of quantum computing seems to be a formidable
competitor when it comes to solving this problem. The enor-
mous computational power of quantum computers coupled
with the recent developments which indicate the creation of
near error-free quantum computers in the not-so-distant fu-
ture makes it a compelling choice for implementing machine
learning algorithms in this field [1]. Quantum Computers can
capture complex information from the data provided with
only a fraction of trainable weights and shallower networks
compared to their classical counterparts. This makes them
more resistant to the problems arising from deeper networks
with millions of trainable parameters and suitable for tasks
where more complex information must be extracted from
the data. The quantum advantage primarily arises due to
their operability based on qubits, which are the superposition
of the two fundamental bit states and the entanglement
phenomenon that these qubits exhibit [2].

However, Quantum Machine Learning (QML) has its
impairments, and its use is therefore still limited in appli-
cations in the real world. Although there are promises of
near-error-free quantum computers, the reality of today is
that most quantum computers available are very noisy and
sensitive to external environmental factors [3]. In this era of
(NISQ) computing, the limitation in the number of feasible
qubits presents a great challenge in the design of Quantum
Neural Networks, making it essential to reduce classical data
dimension before it can be embedded into initiated qubits
as well as design a quantum network with minimum cost.
The importance of mapping this reduced classical data into
the Hilbert Space effectively thus arises, to be classified
with a variational quantum circuit whose parameters are to
be optimized using classical back-propagation. The form of
network used in this paper mimics a convolutional structure,
as they are resistant to the barren plateaus issue [4]. The
effective method of mapping classical data into quantum
states for various purposes has been found to be dependent
on the data to be processed, leaving the choice of quantum
feature encoding an open problem. Many proposed methods
accomplish this task, with Amplitude Encoding and Angle
Encoding being one of the most widely used encoding
methods.

In previous works, the best quantum encoding technique
has been shown to vary with the dataset to be classified. The
performance of a network had to be evaluated individually
for both mapping techniques for each dataset [5], [6]. While
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Fig. 1: A simplified block diagram illustrating the flowchart of the proposed methodology

this issue has motivated the invention of hybrid encoding
techniques, classification using a weighted result by carrying
out both encoding techniques simultaneously, especially for
a Quantum Convolutional Neural Network (QCNN), is a first
to the best of our knowledge.

Furthermore, an ansatz has also been devised, which is
a building block of a quantum convolutional layer, that
displays a maximum expressibility and entanglement while
maintaining an optimum number of parameters and depth for
proper trainability of the network.

II. PROPOSED METHOD
A. Quantum Feature Encoding

Due to the limitation in the number of employable qubits,
the features of images are extracted using a classical auto-
encoder. Auto-encoders help reduce the unwanted content in
the data by reducing dimensions while preserving only the
regions of interest. This is an effective way to reduce data
especially when data of smaller dimension is needed to be
fed into a quantum network. In order to map the classical
output values of the auto-encoder from the classical domain
to quantum states in the Hilbert space, two commonly used
quantum encoding techniques namely Amplitude Encoding
and Angle Encoding are conducted in parallel in our pro-
posed network. The two encoding techniques are discussed
in the subsequent section,

1) Amplitude Encoding: In Amplitude Encoding, the clas-
sical data points of the features are normalized and then
represented as amplitudes of the basis states formed by n-
qubits. As a result, features of size 2" can be represented by
n-qubits [7] as follows:

on
) =D cili) (D

i=1
Here, |t5) is the quantum state prepared after mapping the
2™-dimensional classical datapoint C' after reduction, ‘z) is
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the i-th computational basis state and ¢; is the i-th element
of the datapoint C.

In the block for Amplitude encoding, as shown in Fig.2,
4 qubits have been assigned so that features of size 16 could
be mapped using them.

2) Angle Encoding: In Angle Encoding [8], the features
are embedded as phases into the parameters of quantum
gates, hence determining the angles of rotation gates. The
embedded feature vector of length n can be represented by
n qubits as:

|¥s) = @i R(x:)[0") )

R(.) can denote any of the rotation gates R, R, or R,.

In this case, as illustrated in Fig.2, 8§ qubits are fed into
the encoder block to perform Angle Encoding on a feature
vector of dimension 8.

It is anticipated that broadening the domain of data being
represented as both amplitude and angle of quantum states
independently will help aid the training of a QCNN and lead
to enhanced classification performance.

B. Proposed Quantum Convolutional Neural Network

Analogous to a classical CNN, a QCNN consists of convo-
lutional and pooling layers, which are stacks of convolutional
and pooling filters, respectively. These filters or ansatzes are
quantum circuits made of various parameterized quantum
gates. In order to constrain a quantum circuit’s cost, all gates
employed in the proposed network are kept limited to one-
qubit or two-qubit interactive gates as shown in Fig.3.

The ansatz used to constitute the convolutional layer of
the proposed architecture is aimed to provide maximum ex-
pressibility as well as entanglement with a minimal number
of layers of ansatz. Among various types of circuits in [9], a
four-qubit ansatz shown in Fig.2 is chosen that satisfies the
aforementioned demand. However, the number of parameters
in this ansatz only being two, affected the trainability of the
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Fig. 2: The two different encoding schemes used in a parallel QCNN structure

network and consequently, this ansatz is added with a Us
gate at each qubit after being reduced to a 2-qubit interactive
structure as shown in Fig.3. The Hadamard gate along with
the Controlled— Z gate establishes entanglement among the
two qubits. The R, gates cause rotation of the qubit about
the y-axis and improve the expressibility of a quantum circuit
[9]. The Us gate is a combination of rotation and phase shift
gates added with the intention of increasing the flexibility of
the network.

The pooling ansatz establishes a weighted interdependency
with the help of Controlled-Rotation and Pauli gates. Fol-
lowing that, one qubit is discarded and fed into the next part
of the network as illustrated in Fig.2.

In the overall structure, two convolutional and three pool-
ing layers are employed at each parallel path of the network.
After the second pooling layer, a quantum analogous of
a fully connected layer is executed in order to establish
interaction among the two paths with the help of CNOT
gates.

Ry(¢1) Us(¢2, ¢3, ¢a)

Ry(¢5) Us(¢e, ¢7, d8)

=) (=]

Fig. 3: The ansatz used to build the convolutional layers
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C. Cost Function optimization

The quantum states prepared by the network are then
measured, which means that they are made to collapse from a
probabilistic quantum state to a deterministic classical value.
The expectation values of the qubits are then measured and
subsequently subjected to the softmax function. The outputs
are then used to calculate the cross-entropy loss function,
which is carried out in the classical domain. Mathematically
the cost function can be expressed as the following.

output size

>

i=1

loss = y;-log(7;) 3)

where y; is the true-label and ; is the predicted probability
of the corresponding class.

The minimization of this objective function is carried out
to optimize the parameters of the ansatz making up the
QCNN layers.

III. RESULTS AND ANALYSIS

A. Datasets

The first two classes of the two standard and widely
employed datasets, MNIST [10] and Fashion MNIST [11],
were chosen for classification. For both the datasets, the
first two classes were chosen in order to perform binary
classification, with each class containing 6000 training and
1000 test images, each of size 28 x 28. The images were
then subjected to classical feature extraction using an auto-
encoder.
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TABLE I: Results for Binary Classification

Quantum Encoding Techniques’ Accuracy (%)
Dataset Proposed Amplitude .
& Angle parallel structure Amplitude | Angle
Fashion MNIST 90.9 86.7 84.1
MNIST 93.3 86.4 90.8

B. Simulation and Results

The proposed Parallel QCNN is simulated in Pennylane
[12] where the variational parameters of the quantum gates
are optimized using the Nesterov moment optimization al-
gorithm [13]. Small batches of 75 images are selected at
random and fed into the network where it is duplicated
and consequently encoded to their respective quantum states
via Amplitude and Angle Encoding methods in parallel
branches. Then they are passed through their respective
QCNN structure where the parameters of the gates of both
the convolutional as well as the pooling layers are initialized
randomly. Finally, when the expectation values of the two
measurements are taken, they are fed as input to the classical
cost entropy function where the gradients are calculated. The
use of small batches helps the training process to be quicker
and avoids the cost function to be trapped in a local minima.

Table I shows the classification accuracies for the binary
classification of classes 0 and 1 for MNIST and Fashion
MNIST datasets for various encoding techniques. It can be
observed that for different datasets the type of encoding that
provides the best results are different; Amplitude Encoding
results in an accuracy of 86.7% for Fashion MNIST and
Angle Encoding results in a classification accuracy of 90.8%
for MNIST.

The use of the parallel hybrid encoding technique solves
that problem where it manages to achieve state-of-the-art
accuracies of 90.9% and 93.93% for Fashion MNIST and
MNIST datasets respectively, with a few parameters and a
minimum number of layers; displaying high expressibility
of the network. The results show a clear superiority of
the parallel structure to those where Amplitude and Angle
Encoding has been deployed alone. The proposed parallel
structure along with the modifications in the QCNN network
enables the network to learn more nuanced information for
a wider range of data and automatically applies more weight
to the encoding technique which outperforms its counterpart.
The fact that the parallel encoding technique outperforms
the best encoding technique for each of the two datasets
goes on to prove that even if a particular encoding technique
performs better than the other for a dataset, there is still
some information that is extracted by the lesser-performing
encoding technique which goes on to be unnoticed by its
better counterpart. It is this information that the proposed
parallel encoding technique can extract from a dataset, which
enables it to outperform even the best encoding techniques
in each of the datasets.

IV. CONCLUSION

In this paper, a new parallel encoding technique coupled
with a QCNN structure with a very small number of trainable
parameters is proposed. It is shown that the network is
extremely effective in dealing with different types of datasets.
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The paper aims to demonstrate that the quantum encoding
methods that are not the best in terms of classification
accuracy, still manage to extract some information that is
overlooked by the encoding method bearing the best results
for a particular dataset. This means that even the best quan-
tum encoding techniques suited for a particular dataset are
unable to extract and interpret all the classical information
content when encoding them to quantum states and it is
for that reason a parallel structure with different encoding
techniques can reap more accurate results across multiple
datasets. This means that the development of more general-
ized and robust quantum encoding techniques is immensely
important for the development of classical data processing
using quantum machine learning algorithms. Due to com-
putational and hardware limitations, only a small network
with a minimal number of qubits has been simulated in this
paper. Future works may include the development of similar
parallel structures using combinations of various existing
encoding techniques and carrying out in-depth investigations
regarding the correlations between the performance, type of
data, and encoding techniques. In this way, a more robust,
and generalized encoding method can be devised which can
then be used to encode a wide array of classical data.
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