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Abstract—Brain-computer interface (BCI) systems rely on
capturing characteristics of human brain activity from the
electroencephalography (EEG) signals, especially for the reliable
classification of motor imagery tasks. For multi-channel EEG
signals, it is crucial to precisely capture the spatio-temporal
variation along with the frequency characteristics. Hence, instead
of directly operating on raw EEG data, in this paper, discrete
wavelet transform (DWT) is first applied to the motor-imagery
multi-channel EEG data and then a deep learning architecture
is designed incorporating spatial-temporal operations, which
operates on the DWT-transformed EEG signal. In the proposed
architecture, temporal convolution followed by spatial convolu-
tion is performed on the DWT-operated MI-EEG signal, and
this part is termed as SAT-net. Next, by considering all channels
together convolutional operation is performed to reduce the
number of channels and this part is termed as SOC-net. Finally, a
fully connected layer is used to classify the MI-EEG data from the
derived feature vector. Extensive experimentation is performed
on multiple subjects taken from the MI-based EEG dataset BCI
Competition IV 2a. It is found that the proposed model offers a
classification accuracy of 84.65%, consistently providing better
classification performance than that obtained by some state-of-
the-art methods.

Index Terms—Discrete Wavelet Transform, Convolutional Neu-
ral Network, Motor Imagery, EEG signals

I. INTRODUCTION

Electroencephalography (EEG) signals are most widely
used in brain-computer interface (BCI) systems to classify
motor imagery (MI) tasks [1]. Brain activity related to various
MI tasks needs to be precisely extracted from the EEG signals
through the BCI systems for controlling external devices [2],
[3]. Machine-learning based methods utilize various time-
frequency operations or decomposition algorithms to extract
hand-crafted features from the MI-EEG signals [4], [5]. In this
case, getting the best set of features is always very difficult and
strongly depends on the choice of feature extraction process.

On the contrary, deep neural network based methods are
getting popularity, as they do not need any sort of feature
extraction stage. In this case, most of the proposed methods
for classifying the MI tasks utilize a 2D image generated from
the corresponding given 1D multi-channel EEG signals or their
transformed (or decomposed) versions.

Indeed, end-to-end deep learning algorithms have gained
significant popularity in recent years for their remarkable
performance in classifying motor imagery (MI) tasks from
EEG signals [6], [7], [8], [9]. In [6], deep learning model
is proposed consisting of a wide-band and a narrow-band MI-
EEG signal. Here, it is demonstrated that incorporating beta
wave motor imagery task cues resulted in an improvement
in classification accuracy for MI-EEG signals. In [7], a pre-
trained CNN algorithm is proposed for MI-based BCI systems
to achieve improved classification accuracy where continuous
wavelet transform (CWT) is utilized to obtain image from the
EEG signals. In [8], a deep CNN (DCNN) is employed for
the classification of MI-task EEG signals belonging to two
different classes where short-term Fourier transform and CWT
are utilized. Since these methods use the transformed images,
they may not be able to exploit the information available in
the 1D time-series data of each channel. Moreover, dealing
with 2D images is computationally expensive in comparison
to the 1D counterpart.

In this paper, a deep learning based efficient algorithm is
proposed to improve the classification accuracy of discrete
wavelet transform (DWT) operated MI-EEG signals. Here
DWT is first used to obtain time-frequency decomposition of
the MI-EEG signals. A deep learning network based on spatial-
temporal operations on the wavelet transformed data, namely
STOW-Net is proposed. In order to extract spatio-temporal
features, a SAT-Net is first designed that involves temporal
convolution followed by spatial convolution on the DWT-
operated MI-EEG signal. Next, spatial convolutional operation
is used to reduce the channels (SOC-Net). Finally, the clas-
sification performance of the proposed method is investigated
on a publicly available MI-EEG dataset for multiple subjects.

II. BCI COMPETITION IV 2A DATASET

The BCI Competition IV 2a dataset provided by the Uni-
versity of Graz is a popular dataset used for investigating
MI-EEG signal classification performance [10]. A band-pass
filter (0.5 Hz - 100 Hz) and a 50 Hz notch filter are used to
process the signal before sampling at a rate of 250 Hz. Motor
imagery data were collected from 9 subjects in two separate
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Fig. 1. Proposed STOW-Net Architecture: SAT-Net and SOC-Net

sessions conducted on different days. The dataset consists of
four classes (left hand, right hand, foot and tongue), 12 trials
per class, i.e. 48 total trials per session. In six sessions, there
are total 288 trials for four classes.

III. PROPOSED METHODOLOGY

In this section, a deep learning method for MI task classi-
fication is proposed based on the DWT of MI-EEG signal. In
the proposed network, instead of using the raw MI-EEG data,
DWT-operated MI-EEG signals are utilized as the input. First,
a spatial-temporal operation and then a spatial domain channel
reduction is performed on the DWT-operated MI-EEG signals.
As the proposed network performs spatial-temporal operations
on the wavelet-transformed data, it is termed the STOW-Net.

A. Pre-processing

The dataset used in this study consists of 22 EEG channels
with a sampling rate of 250 Hz. Here data is collected by
applying a bandpass filter (0.5-100Hz). A duration of 4.5
seconds is taken for each recorded signal, which contains
the motor imagery portion. Here 1125 samples are obtained
for a sampling frequency of 250 Hz. For each trial a 2D
representation of size 22×1125 is generated from the 22 EEG
channels of data.

B. Discrete Wavelet Transform

Discrete wavelet transform is a multi-resolution time-
frequency domain analysis technique that is suitable for
extracting features of EEG signals of non-stationary nature
[11], [12]. The DWT is widely used to decompose a given
signal into low-pass and high-pass components, resulting in
approximate and detailed coefficients, respectively. A single-
stage filter bank architecture of the DWT is used, where the
input signal x(n) is passed through the low-pass filter g(n) and
the high-pass filter h(n) and the corresponding output with a
downsampling factor of 2.

C. Proposed STOW-Net Architecture

In this subsection, the proposed STOW-Net architecture is
presented, which provides MI-tasks classification at the output
by extracting the features from the DWT-operated MI-EEG
signal. The STOW-Net architecture consists of spatial and tem-
poral network (SAT-Net) block and spatially operated channel
reduction network (SOC-Net) block. Basically the SAT-Net
block is designed to extract temporal and spatial features from

multi-channel wavelet transformed MI-EEG signals. The SOC-
Net block is designed to extract the spatial features of one
channel from multi-channel SAT-Net output feature vector.
These blocks are discussed in the following subsections.

1) SAT-Net: A temporal-spatial convolutional network is
designed to extract temporal and spatial features from the
DWT decomposed EEG signal. As the network performs
spatial and temporal operations, it is termed as the SAT-Net.
In Fig. 1(a), the SAT-Net architecture is shown. Here at first
a temporal convolution layer is used to extract the temporal
characteristics of each channel. Next, an average pooling layer
is added to reduce the size. Next, the output of the average
pooling layer is fed to a spatial convolution layer. In the
SAT-Net, temporal features of the DWT transformed input
signal are extracted by twenty five filters with a kernel size
of (1× 5) in a convolutional layer. Next, batch-normalization
and exponential linear units (ELU) are employed to the output
of the temporal convolution layer. After using the temporal
convolutional layer, an average-pooling layer is used to reduce
the length of its outputs. Here the kernel size (1× 2) and the
stride size (1 × 2) are used. Next, the spatial convolutional
layer is applied on the output of the average-pooling layer to
extract the spatial features. Here kernel size of (3 × 5) and
the padding size of (1, 0) are used along with 50 filters. Also
batch-normalization and ELU operations are used after the
spatial convolutional network block.

2) SOC-Net: Multi-channel to single-channel spatial convo-
lutional network is applied to extract spatial features from the
output of the SAT-Net stage. This spatially operated channel
reduction convolutional network is collectively called SOC-
Net. In Fig. 1(b), the SOC-Net architecture is shown. Here
an average pooling layer is added after the spatial convolution
layer. In the SOC-Net, an average-pooling layer is first used
to reduce the length of the SAT-Net output. Here kernel
size and stride size are kept the same as those used in the
previous average pooling stage. Next, the multi-channel to
single-channel spatial convolutional network layer is applied
on the output of the average-pooling layer in this SOC-Net.
Here the number of channels in the input signal is equal to
the number of kernels in the spatial convolutional layer. In this
operation, 50 filters are used to extract the temporal properties
of each channel. Next, batch-normalization and exponential
linear units (ELU) are employed to the output of the spatial
convolution layer.

After using the SOC-Net convolutional network, a max-
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TABLE I
LAYERS OF THE PROPOSED STOW-NET MODEL

Blocks Layer Filter Kernel Size STOW Output Shape Options
- Input - - [4] -
WT dwt - - [1, 22, 563] -
SAT-Net Conv2d 25 (1x5) [25, 22, 559] BatchNorm, ELU
- AvgPool2d - (1x2), stride(1x2) [25, 22, 279] -
- Conv2d 50 (3x5), padding(1x0) [50, 22, 275] BatchNorm, ELU
SAC-Net AvgPool2d - (1x2), stride(1x2) [50, 22, 137] -
- Conv2d 50 (22x1) [50, 1, 137] BatchNorm, ELU
- MaxPool - (1x50), stride(1x5) [50, 1, 18] Dropout
- Flatten - - [900] -
- Linear - - [4] -

pooling layer is used to reduce the length of the output of
multiple single-channel filters. Here the minimum number of
output with the highest quality feature is selected. The kernel
size of the max-pooling module is kept (1×50) and the stride
size is chosen as (1 × 5). Finally, a flattening operation is
performed to obtain the desired feature vector. A detailed step-
by-step description of the proposed architecture is presented
in Table I.

IV. EXPERIMENTAL RESULTS

In this section, a publicly available dataset is considered to
analyze the performance of the proposed STOW-Net method.
The dataset contains nine healthy subjects to calculate the
classification accuracy. There are training and testing datasets
separately available for each subject. For the purpose of
achieving high training accuracy, 200 epochs are used in the
training process. Here the results obtained from the dataset
IV 2a using the proposed method are presented, which are
compared with the results obtained by some state-of-the-art
methods. An analysis considering different types of wavelet
transformed MI-EEG signals is also presented for the proposed
method. Moreover, an ablation study on two major steps
involved in the proposed method is also presented.

TABLE II
CLASSIFICATION PERFORMANCE COMPARISON AMONG DIFFERENT

METHODS

Subject RME MEMDBFC DBCNN CWT-SCNN 2L-CNN STOW-Net
[13] [14] [6] [15] [16]

01 82.00 90.28 99.44 74.70 82.14 97.92
02 86.00 65.28 75.69 81.30 75.05 68.75
03 84.00 93.75 86.11 68.10 90.10 87.50
04 78.00 74.31 84.72 96.30 94.61 85.42
05 79.00 68.06 60.42 92.50 92.30 63.89
06 86.00 78.47 74.41 86.90 86.75 78.47
07 75.00 79.86 88.19 73.40 76.60 97.22
08 80.00 97.22 84.72 91.60 80.50 86.11
09 75.00 93.75 94.44 84.40 79.55 96.53

Ave. 77.33 82.33 82.56 83.20 84.18 84.65
Std 11.59 11.86 10.22 12.09 16.64 11.58

In Table II, the classification accuracies achieved by differ-
ent state-of-the-art methods on the same dataset are reported
separately. To compare the proposed method in terms of
subject-wise accuracy, reported overall average accuracy and
standard deviation, we consider five methods. In [13], wavelet
packet transform (WPT) is used to extract wavelet domain
features and then various machine learning algorithms are

applied on the selected features for EEG signal classification
of motor imagery. Here the Rényi min-entropy (RME) method
is applied for feature selection and the random forest classifier
is found as the best performing method. In the DBCNN
technique proposed in [6], signals from two band-limited MI-
EEG signals are used as input raw data. Next, a deep learning
network is used to extract the features from the MI-EEG data.
In [14], the multivariate empirical mode decomposition (EMD)
is used to decompose the EEG signal along with the common
spatial pattern. Next, linear discriminant analysis (LDA) and
support vector machine (SVM) classifiers are applied (two-
class problem). A method combining CWT and a simplified
CNN, namely CWT-SCNN, is proposed in [15]. In the CWT-
SCNN method, the CWT is first used to decompose MI-EEG
data and then the CNN is used to extract the features. A 2-layer
CNN (2L-CNN) model is proposed in [16], where wavelet
transform based 2D image is formed from the raw EEG data
extracted from C3, Cz and C4 channels and a 2-layer CNN is
applied as a classifier for 2D image classification.

TABLE III
EXPERIMENTAL RESULTS USING DIFFERENT DWT DECOMPOSED

SIGNALS

Subject DWT High-freq. DWT Concatenated DWT Low-freq. Sig.
S01 93.75 96.53 97.92
S02 70.14 65.97 68.75
S03 94.44 93.75 87.50
S04 87.50 84.03 85.42
S05 70.14 69.44 63.89
S06 74.31 78.47 78.47
S07 79.17 93.75 97.22
S08 82.64 79.86 86.11
S09 97.22 95.14 96.53
Ave. 83.26 84.10 84.65

TABLE IV
EFFECT OF DIFFERENT BLOCKS OF THE PROPOSED STOW-NET

Input Raw Raw to DWT data SAT-Net SOC-Net Avg.
✓ ✓ × ✓ 82.87
✓ × ✓ ✓ 83.79
✓ ✓ ✓ ✓ 84.65

It is observed from the Table II that the proposed method
provides a very satisfactory classification accuracy with the
lowest standard deviation compared to other methods. In
particular, the use of wavelet decomposition based STOW-Net
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method results in consistently high accuracy with an average
of 84.65% and standard deviation of 11.58 over nine subjects.
For example, with respect to the average accuracy reported in
[15], STOW-Net provides 2.32% higher accuracy.

In this part, our objective is to analyze the variation in
classification performances in three cases based on the DWT
operation: when only high-frequency (detail) DWT coefficients
are used, when only low-frequency (approximate) DWT coef-
ficients are used and the case when the features obtained from
the above two cases are concatenated. Experimental results
obtained for these three cases are shown in Table III. From
these experimental results, it can be seen that the classification
results using high-frequency wavelet decomposed signals or
the concatenated features are slightly lower compared to
that obtained for the low-frequency decomposed signals. The
sampling frequency used is 250 Hz and thus the low frequency
(less than 62.5 Hz) wavelet coefficients contain the major brain
activities related to the motor-imagery tasks. Hence, the low-
frequency DWT coefficients provide better results.

An ablation study is conducted on the proposed method
to understand the effect of DWT operation and SAT-net on
the overall classification performance. The results obtained
for different cases where SAT-net and DWT are not used
are shown in Table IV. From the table it is clearly observed
that the use of the SAT-net module increases the classification
accuracy significantly (2.22% improvement). It is because of
the use of temporal convolution which extracts the temporal
characteristics of individual channels and spatial convolution
which considers inter-channel relationships in the small vicin-
ity of a particular channel. Using wavelet decomposition data
increases the classification accuracy by 0.86%. It is to be noted
that in this case, the proposed SAT-net plays an important role
even when the wavelet decomposition is not applied and helps
offer satisfactory results.

V. CONCLUSION

In this paper, a deep-learning framework for MI-task clas-
sification from multi-channel EEG data is presented. In our
proposed STOW-Net model, first discrete wavelet transform
(DWT) is employed to decompose the MI-EEG signals into
time-frequency band-limited signals. Then the DWT operated
MI-EEG signals are passed through the proposed SOW-net
architecture. In the SOW-net, SAT-Net and SOC-Net are used
to extract features of motor imagery EEG tasks. Here SAT-Net
explores the temporal convolution and spatial convolution on
the decomposed band-limited MI-EEG signals and SAC-Net
reduces the number of channels by using the is to extract
spatial features from SAT-Net feature vectors for a single
channel. Improved classification performance is achieved by
using this band-limited decomposition of MI-EEG signals for
motor imagery tasks.

It is clearly observed that the use of SAT-net improves the
classification performance due to its capability of extracting
temporal features (within an individual channel, temporal
variation) as well as spatial features (inter-channel relationship
in the small neighborhood). It is also found that the use of

discrete wavelet transformed EEG data offers better perfor-
mance, especially when low-frequency decomposed EEG data
are used. Moreover, the incorporation of the SOC-net offers
a channel reduction at the last stage via spatial convolution
(inter-channel relationship among all channels at a time).
Finally, the simulation results on the widely used public dataset
BCI competition IV 2a exhibits a consistently better perfor-
mance in comparison to some existing methods. The subject-
wise classification performances are also very satisfactory for
all subjects.
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signal classification utilizing rényi min-entropy-based feature selection
from wavelet packet transformation,” Brain informatics, vol. 7, no. 1,
pp. 1–11, 2020.

[14] P. Gaur, R. B. Pachori, H. Wang, and G. Prasad, “An automatic subject
specific intrinsic mode function selection for enhancing two-class eeg-
based motor imagery-brain computer interface,” IEEE Sensors Journal,
vol. 19, no. 16, pp. 6938–6947, 2019.

[15] F. Li, F. He, F. Wang, D. Zhang, Y. Xia, and X. Li, “A novel simplified
convolutional neural network classification algorithm of motor imagery
eeg signals based on deep learning,” Applied Sciences, vol. 10, no. 5,
p. 1605, 2020.

[16] B. Xu, L. Zhang, A. Song, C. Wu, W. Li, D. Zhang, G. Xu, H. Li, and
H. Zeng, “Wavelet transform time-frequency image and convolutional
network-based motor imagery eeg classification,” Ieee Access, vol. 7,
pp. 6084–6093, 2018.

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 862


